André Joyce Fan Club | Dominissimo | Googology | Hierogonometry | Jootsy Calculus | links | Laws | Merology | neologisms | non-Najunamarian | Pataphysics | Sequences | transfinites | trazillion | zerology
Sequences
Some of the sequences referenced in the club's other pages are named and further explained here. Some, those with an "A number", are officially recognized by the On-line Encyclopedia of Integer Sequences, OEIS.
aban: [e:a::eban:?] referring to integers without an "a" -- 0, 1, 2, 3, ... , 999, 1000000, 1000001, ... , 1000999, 2000000, 2000001, ... , googol, ..., googolplex, ...
Abntu: ["ab-'n-too", Bantu (ban two) alphome] A072809 alphadigital Bantu, with digits in alphabetical order, namely, 8, 5, 4, 9, 1, 7, 6, 3, 0
acci: [nonacci backformation] https://oeis.org/A104144 integer not nonacci, f(n) = N(f(n - 1) + f(n - 2) + f(n - 3) + f(n - 4) + f(z - 5) + f(z - 6) + f(z - 7) + f(z - 8) + f(z - 9)) -- 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, ...
agonal: [nonagonal backformation] integer not nonagonal f(z) = N(z(7z - 5)/2) -- 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, ...
almost Beethoven: digital expantion of Beethoven -- 2, 1, 3, 6, 5, 5, 6, 0, 6, 7, 6, 8, 9, 2, 9, 3, 1, 2, 5
almost-perfect: A79718 digital expansion of perfect numbers -- 2, 1, 0, 1, 8, 2, 2, 9, 9, 0, 1, 2, 3, 4, 2, 4, 7, 9, 3, 1, 6, 0, 0, 3, 6, 2, 2, 8, 5, 0, 5, 6, 0, 8, 6, 8, 9, 6, 1, 8, 4, 8, 2, 7, 2, 2, 3, 7, 2, 6, 3, 6, 0, 3, 3, 2, 8,
alphadigital: A72763 referring to integer with digits in alphabetical order --10, 11, 12, 13, 41, 51, 16, 17, 81, 91, 20, 12, 22, 32, 42, 52, 62, 72, 82, 92, 30, 13, 32, 33, 43, 53, 63, 73, 83, 93, 40, 41, 42, 43, 44, 54, 46, 47, 84, 49, 50, 51, 52, 53, 54, 55, 56, 57, 85, 59, 60, 16, 62, 63, 46, 56, 66, 67, 68, 69, 70, 17, 72, 73, 47, 57, 76, 77, 87, ...
*anti-numberdrome, odd-digited: A93472, 159, 258, 357, 456, 555, 654, 753, 852, 951, 11599, 12589, 13579, 14569, 15559, 16549, 17539, 18529, 19519, 21598, 22588, 23578, 24568, 25558, 26548, 27538, 28528, 29518, 31597, 32587, 33577, 34567, 35557, 36547, 37537, 38527, 39517, 41596, 42586, 43576, 44566, 45556, 46546, 47536
Babylonian reciprocal: ["igibum"] A94086 number which when multiplied by zth ugly number gives a power of sixty, f(z) = g(2, [log(z)/log(60)], 60)/A51037(z) -- 60, 30, 20, 15, 12, 10, 450, 400, 6, 5, 4, 225, 200, 3, 150, 144, 8000, 2, 6750, 100, 90, 80, 75, 72, 4000, 1, 3375, 50, 48, 45, 160000, 40, 2250, 36, 2000, 30, 1728, 101250, 1600, 25, 24, 1350, 80000, 20, 1125, 18, 1000, 16, 15, 3200000, 864, 50625, 800, 750, 12, 675, 40000, 10, 576, 33750, 9, 32000
Bantu: [ban two] A52404 referring to integer without 2 -- 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89
basic: inventory of z in all bases z to one -- 1, 10, 11, 10, 11, 111, 10, 11, 100, 1111, 10, 11, 12, 101, 11111, 10, 11, 12, 20, 110, 111111, 10, 11, 12, 13, 21, 111, 1111111, 10, 11, 12, 13, 20, 22, 1000, 11111111, 10, 11, 12, 13, 14, 21, 100, 1001, 1111111111, 10, 11, 12, 13, 14, 20, 22, 101, 1010, 1111111111, 10, 11, 12, 13, 14, 15, 21, 23, 102, 1011, 11111111111, 10, 11, 12, 13, 14, 15, 22, 24
Begöl: [alphadigital Göbel] 1, 2, 3, 5, 10, 82, 541, 5320, 8855110, 591777663220, 5544911176666332220000
beta Centauri: [alpha:alpha Centauri::beta:?] tridigital expansion of p - 3, f(z) = [g(2, (3z + 3)(p -3), 10] - [g(2, 3z, 10)(p - 3)] -- 141, 592, 653, 589, 793, 238, 462, 643
binary reversal: f(z) = y (base 2) = R(y) (base 2) -- 0, 1, 1, 3, 2, 5, 2, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 112, 9, 73, 41, 105, 25, 89, 57, 121, 5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125, 3, 67, 35, 99, 19
biographical: referring to integer which tallies one or more other integers' digits left-to-right from zero f(z) = #(d(z) = 0)g(2, d(n\z), 10), 10 + #(d(z) = 1)g(2, (d(z) - 1), 10) + ... + #(d(z) = 9) -- 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, ..., 9999999999
bicomposite: [prime:biprime::composite:?] referring to composite with at least four prime factors which may or may not be different, f(z) = Np(i)Np(j) -- 16, 18, 20, 24, 28, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 225, 228, 232, 234, 240, 243, 248, 250, 252, 256, 260, 264, 268, 270, 272, 276, 280, 282, 286, 288, 290, 294, 297, 298, 300
bipolar: with only minimum and maximum digits, f(z) = 9Sg(2, a, 10) > , where i = 0 or 1 -- 90, 900, 909, 990, 9000, 9009, 9090, 9099, 9900, 9909, 9990, 90000, 90009, 90090, 90099, 90900, 90909, 90990, 90999, 99000, 99009, 99090, 99099, 99900, 99909, 900000, 900009, 900090, 900099
Caliban: [a:aban::cali:?] A72958 referring to integer without a, c, i or l -- 1, 2, 3, 4, 7, 10, 14, 17, 20, 21, 22, 23, 24, 27, 40, 41, 42, 43, 44, 47, 70, 71, 72, 73, 74, 77, 100, 101, 102, 103, 104, 107, 110, 114, 117, 120, 121, 122, 123, 124, 127, 140, 141, 142, 143, 144, 147, 170, 171, 172, 173, 174, 177, 200, 201, 202, 203, 204, 207
cancrine: A81365 word-palindrome number -- 101, 202, 303, 404, 505, 606, 707, 808, 909, 1001, 2002, 3003, 4004, 5005, 6006, 7007, 8008, 9009, 10010, 110011, 120012, 130013,
11111, 22222, 33333, 111111, 222222, 333333, 1111111, 2222222, 3333333, 11111111, 22222222, 33333333
cheaper: : referring to integers with any two of 1, 2 or 3, -- 12, 13, 21, 23, 31, 32, 112, 113, 121, 122, 131, 133, 211, 212, 221, 223, 232, 233, 311, 313, 322, 323, 1112, 1113, 1121, 1122, 1211, 1212,
cheapest: : referring to integers with 1, 2 and 3 only -- 123, 132, 213, 231, 312, 321, 1123, 1132, 1213, 1231, 1312, 1321, 2123, 2132, 2213, 2231, 2312, 2321, 3123, 3132, 3213, 3231, 3312, 3321, 11123, 11132, 11213, 11231, 11312, 11321, 12123, 12132, 12213, 12231, 12312, 12321
Collatz, modified: A72761 referring to modified Collatz sequence allowing change of x to 3x + 1 even when x = 2n -- 0, 1, 7, 2, 5, 8, 8, 3, 11, 5, 9, 9, 8, 9, 9, 4, 9, 12, 14, 7, 7, 11, 12, 10
consonant-tailed: NA79741 integer with name ending in consonant -- 4, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 24, 26, 27, 28, 34, 36, 37, 38, 44, 46, 47, 48, 54, 56, 57, 58, 64, 66, 67, 68, 74, 76, 77, 78, 84, 86, 87, 88, 94, 96, 97, 98, 100, 104, 106, 107, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 124, 126, 127, 128, 134, 136, 137
cubefull: [square:squarefull::cube:?] A81367 referring to integer divisible by a prime cubed, f(z) = 0 (mod g(2, 3, p) -- 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000,
cubic gnomic: 7, 19, 37, 61
curvaceous: A72960 referring to integer written with curves only, i. e., with 0, 3, 6, 8 or 9 -- 0, 3, 6, 8, 9, 30, 33, 36, 38, 39, 60, 63, 66, 68, 69, 80, 83, 86, 88, 89, 90, 93, 96, 98, 99, 300, 303, 306, 308, 309, 330, 333, 336, 338, 339, 360, 363, 366, 368, 369, 380, 383, 386, 388, 389, 390, 393, 396, 398, 399, 600, 603, 606, 608, 609, 630, 633, 636, 638, 639
curvilinear: A72961 referring to integer which is both curved and linear, i. e., 2 or 5 -- 2, 5, 22, 25, 52, 55, 222, 225, 252, 255, 522, 525, 552, 555, 2222, 2225, 2252, 2255, 2522, 2525, 2552, 2555, 5222, 5225, 5252, 5255, 5522, 5525, 5552, 5555, 22222, 22225, 22252, 22255, 22522, 22525, 22552, 22555, 25222, 25225, 25252, 25255, ..., 2[g(2, 101, 10)/9] + 3
d-ban: not containing a "d" -- 0, 1, 2, 3, 4, 5, 6, 7, 8, ..., 99, 1000000, 1000001, ...
dear: referring to integers with 7, 8, or 9 but not two -- 7, 8, 9, 77, 88, 99, 777, 888, 999, 7777, 8888, 9999, 77777, 88888, 99999, 777777, 8888888, 999999, 7777777, 8888888, 9999999, 77777777, 88888888, 99999999
dearer: referring to integers with any two of 7, 8, or 9 -- 78, 79, 87, 97, 98, 778, 787, 788, 877, 878, 887, 977, 979, 997, 7778, 7779, 7787, 7788, 7797, 7799, 7877, 7878, 7977, 7979, 8777, 8778, 8787, 8788,
dearest: with only 7s, 8s, and 9s -- 789, 798, 879, 897, 978, 987, 7789, 7798, 7879, 7889, 7897, 7898, 7899, 7978, 7987, 7989, 7998, 8779, 8789, 8797, 8798, 8799, 8879, 8897, 8977, 8978, 8979, 8987, 8997,
decacci: Fibonacci-like sequence but adding previous 10, f(z) = f(z - 1) + f(z - 2) + f(z - 3) + f(z - 4) + f(z - 5) + f(z - 6) + f(z - 7) + f(z - 8) + f(z - 9) + f(z - 10) -- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, 16336, 32656, 65280, 130496, 260864, 521472, 1042432, 2083841, 4165637, 8327186, 16646200, 33276064, 66519472, 132973664
decinary reversal: A93474 alternating between base 2 and base 10 reversing between f(z + 1) = R(f(z)(base 2)) (base 10) -- 0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89
DENEAT: A73053 referring to integer generated by application of DENEAT (digits-even-not-even-and-total) operator, f(z) = 100(#(d(x))) + 10(#(d(y)) + #(d(z)) where d(x) = 0 (mod 2) and d(y) = 1 (mod 2) -- 2n11, 101, 11, 101, 11, 101, 11, 101, 11, 22, 112, 22, 112, 22, 112, 22, 112, 22, 112, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 112, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 22, 112, 22, 112, 22, 112, 22
deneaticity: A73054 referring to number of applications of DENEAT (digits-even-not-even-and-total) operator needed to reduce z to 123, f(z) = #(DENEAT(z)) -- 5, 2, 5, 2, 5, 2, 5, 2, 5, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 1, 2, 1, 2, 1
Diephi: A93473 [Diep + phi] next z digits of phi -- 1, 61, 803, 3988, 74989, 484820, 4586834, 36563811, 772030917, 9805762862, 13544862270, 526046281890, 2449707207204, 18939113748475, 408807538689175, 2126633862223536, 93179318006076672, 635443338908659593, 9582905638322661319, 92829026788067520876, 689250171169620703222, 1043216269548626296313,
61443814975870122034080, 588795445474924618569536,
4864449241044320771344947
digital power: [addition:exponentiation::digital sum:?] A75877 f(z) = Pd(i), g(2, d(i + 1), where z = Sg(2, i, 10)d(i) -- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 3, 9, 27,
digital product: [addition::multiplication::digital sum:?] A7954 f(z) = P(d(i)), where z = Sg(2, i, 10)d(i) -- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3,
Diglnow: [alphadigital Dowling] 1, 2, 13, 413, 8512, 57632, 547732, 9996320, 554733220, 5449917320, 855444999177333220
d-ish: containing a "d" -- 100, 101, 102, 103, 104, 105, 106, 107, ,,,, 999999, 1000100, 1000101
dodecahedral gnomic: A93485 f(z) = z(3z - 1)(3z -2)/2 - (z - 1)(3(z -1) -1)(3(z - 1) - 2)/2 = -- 19, 64, 136, 235, 361, 514, 694, 901, 1135, 1396, 1684, 1999, 2341, 2710, 3106, 3529, 3979, 4456, 4960, 5491, 6049, 6634, 7246, 7885, 8551, 9244, 9964, 10711, 11485, 12286, 13114, 13969, 14851, 15760, 16696, 17659, 18649, 19666, 20710, 21781, 22879, 24004, 25156, 26335, 27541
double-header: integer with first two digits identical, f(z) = 11a(g(2, [l0(b - 2)], 10) + b, a < 10 -- 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 226, 227, 228, 229, 330, 331, 332, 334, 335, 336,337, 338, 339, 440
double primorial: [factorial:primorial::double factorial:?] A79078 n## = p(i)p(i - 2)##; ((2n)## = P(p(2i)) and (2n + 1)## = P(p(2i + 1)), where p(n) = nth prime -- 2, 3, 10, 21, 110, 273, 1870, 5187, 43010, 150423, 1333310, 5565651, 54665710, 239322993, 2569288370, 12684118629, 151588013830, 773731236369, 8640516788310, 54934917782199, 630757725546630, 4339858504793720
dufactorial: f(z) = (z!)! -- 1, 2, 720, 620448401733239439360000, 668950291344912705758811805409037258675274633313802981029567135230
163355724496298936687416527198498130815763789321409055253440858940
812185989848111438965000596496052125696000000000000000000000000000
0
Eckover: A93648 [pi:e::Pickover:?] decimal place of first z digits of pi in e -- 38, 1862, 3918
Eelru: [alphadigital Euler] 1, 1, 1, 2, 5, 16, 722, 8513, 9763, 55120, 597332, 5776220, 85663222, 899911630, 5911773320, 55499111132, 854997663220, 88444499117733320, 88888591132220, 885511777333220, 8554449991163200, 88449991177633330
emdost: [alphadigital modest] 13, 91, 32, 62, 92, 93, 46, 49, 59, 96, 97, 89, 130, 910, 111, 133, 991, 320, 620,
exponential primorial: f(z) = g(p(z - 1), (2, 0), -1, p(z)) -- 1, 2, 9, 1953125, 1.286479g(2, 1.650582g(2, 6, 10)
faketorial: f(f(z)) = (z!)! -- 1, 1, 2, 6, 7, 8, 720, 721, 722, 723, 724, 726, 727, 728,
9006084097
flawed: NA73417 integer with a, f, l or w -- 2, 4, 5, 11, 12, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 72, 74, 75, 82, 84, 85, 92, 94, 95, 102, 104, 105, 111, 112, 120, 121, 122
flawless: A73417 referring to integer without a, f, l or w -- 1, 3, 6, 7, 8, 9, 10, 13, 16, 17, 18, 19, 30, 31, 33, 36, 37, 38, 39, 61, 63, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78, 79, 80, 81, 83, 86, 87, 88, 89, 90, 91, 93, 96, 97, 98, 99, 100, 101, 103, 101, 103, 106, 107, 108, 109, 110, 113, 116, 117, 118, 119, 130, 131, 133
four-is: A72425 referring to the sequence counting the number of letters in the words of the generating sentence, "Four is the number of letters in the first word of this sentence, two in the second, three in the third, six in the fourth, two in the fifth ..." -- 4, 2, 3, 6, 2, 3, 7, 2, 3, 5, 4, 24, 8, 3, 2, 3, 6, 5, 2, 3, 5, 3, 2, 3, 6, 3, 2, 3, 5, 5, 2, 3, 5, 5, 2, 3, 7, 3, 2, 3, 6, 5, 2, 3, 5, 4, 2, 3, 5, 4, 2, 3, 8, 3, 2, 3, 7, 5, 2, 3, 10, 5, 2, 3, 10, 2, 3, 9, 5, 2, 3, 9, 3, 2, 3, 11, 4, 2, 3, 10, 3, 2, 3, 10
godless: without d, g or o -- 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 23, 25, 26, 27, 29, 30, 33, 35, 36, 37, 39, 50, 53, 55, 56, 57, 59, 60, 63, 65, 66, 67, 69, 70, 73, 75, 76, 77, 79, 90, 93, 95, 96, 97, 99
godly: with d, g or o -- 0, 1, 2, 4, 8, 14, 18, 21, 22, 24, 28, 31, 32, 34, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 58, 61, 62, 64, 68, 71, 72, 74, 78, 91, 92, 94, 98, 100, 101, 102, 103
gogo: f(z) = g(3, 2, z) -- 1, 4, 27, 256, 46656, 16777216, 8916100448256, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979, 104857600000000000000000000, 5842587018385982521381124421
gogoo: f(z) = g(2, 2z, z) -- 1, 16, 729, 65536, 9765625, 2176782336, 678223072849, 281474976710656, 150094635296999121, 100000000000000000000, 81402749386839761113321, 79496847203390844133441536, 91733330193268616658399616009
googo: f(z) = g(2, z, 2z) -- 2, 16, 216, 4096, 100000, 2985984, 105413504, 4294967296, 198359290368, 10240000000000, 584318301411328, 36520347436056576, 2481152873203736576, 182059119829942534144, 14348907000000000000000
googoo: f(z) = g(3, 2, 2z) -- 1, 256, 16777216, 11112006825558016, 18446744073709551616, 39346408075296537575424,
104857600000000000000000000, 341427877364219557396646723584,
1333735776850284124449081472843776, 6156119580207157310796674288400203776,
33145523113253374862572728253364605812736, 205891132094649000000000000000000000000000000
happy couple: referring to integers, f(2z - 1) = Sg(2, 2, d(2z - 1)) and f(2z) = Sg(2, 2, d(2z)) -- 31, 32, 129, 130, 192, 193, 262, 263, 301, 302, 319, 320, 367, 368, 391, 392, 565, 566, 622, 623, 637, 638.655, 656, 912, 913, 931, 932, 1029, 1030, 1092, 1093, 1114, 1115, 1121, 1122, 1151, 1152, 1184, 1185, 1211, 1212, 1221, 1222, 1257, 1258, 1274, 1275, 1299, 1300, 1332, 1335, 1447, 1448, 1474, 1475, 1511, 1512, 1527, 1528, 1574, 1575, 1581, 1582, 1724, 1725, 1744, 1745, 1754, 1755, 1771, 1772, 1784, 1785, 1814, 1815, 1851, 1874, 1875, 1880, 1881, 1882, 1902, 1903, 1929, 1930, 2062, 2063
harmless: A73416 referring to integer without a, h, m or r. -- 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 29, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 1000000000, 1000000001, 1000000002
h-ban:not containing an "h" -- 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 25, 26, 27, 29, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104,
heptagonal gnomic: A16861 f(z) = z(5z - 3)/2 - (z - 1)(5(z - 1) - 3)/2 = 5z + 1 -- 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231
h-ish: containing an "h" -- 3, 8, 13, 18, 23, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 48, 53, 58, 63, 68, 73, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
Horner: [Jack Horner's pulling out of pi] A32445 number of digits to reach z in decimal expansion of p -- 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, 95, 149, 111, 3, 5, 40, 96, 426, 37, 54, 94, 137, 18, 293, 91, 8, 30, 26, 199, 67, 140
i-ban: not containing an "i" -- 0, 1, 2, 3, 4, 7, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 27, 40, 41, 42, 43, 44, 47, 70, 71, 72, 73, 74, 77, 79, 100, 101, 102, 103, 104, 107, 110, 11, 112, 114, 117, 120, 122, 123, 124, 127, 140, 141, 142, 143, 144, 147, 170, 171, 172, 173, 174, 177, 200, 201, 202, 203, 204, 207, 210, 211, 212, 213, 214, 217,
icosahedral gnomic: A93500 f(z) = z(5g(2, 2, z) - 5z + 2)/2 -(z - 1)(5g(2, 2, z - 1) - 5(z - 1) + 2) = -- 11, 36, 76, 131, 201, 286, 386, 501, 631, 776, 936, 1111, 1301, 1506, 1726, 1961, 2211, 2476, 2756, 3051, 3361, 3686, 4026, 4381, 4751, 5136, 5536, 5951, 6381, 6826, 7286, 7761, 8251, 8756, 9276, 9811, 10361, 10926, 11506, 12101, 12711, 13336, 13976, 14631, 15301, 15986
i-ish: containing an "i" -- 5, 6, 8, 9, 13, 16, 18, 19, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 105, 106, 108, 109, 113, 1176, 118, 119, 125, 126, 128, immodest: referring to integers not modest, z = N[z/g(2, a, 10)] (mod (z - [z/g(2, a, 10])-- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90
imperfect: referring to integers not perfect, z = NS(div(z)) -- 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
interddo: [prime:interemirp::odd:?] referring to average of two consecutive odd numbers which when reversed are still odd -- 2, 4, 6, 8, 10, 12, 14, 16, 18, 25, 32, 34, 36, 38, 45, 52, 54, 56, 58, 65, 72, 74, 76, 78, 85, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146
interemirp: [prime:interprime::emirp:?] A79721 referring to average of two consecutive emirps -- 15, 24, 34, 51, 72, 76, 88, 102, 110, 131, 153, 162, 173, 189, 255, 324, 342, 353, 374, 545, 705, 721, 736, 741, 747, 756, 765, 838, 922, 939, 947, 960, 969, 977, 987, 1000, 1015, 1026, 1032, 1047, 1065, 1080, 1094, 1100, 1106, 1130, 1152, 1167, 1187
interfortunate: [prime:interprime::fortunate:?] 4, 6, 10, 18, 20, 18, 21, 30, 49, 64, 64, 66, 59, 77, 83, 60, 85, 99, 96, 91, 115, 174, 149, 102, 163, 223, 175, 175, 207, 177, 196, 436, 441, 198, 162, 303, 339, 219, 195, 195, 291, 308, 492, 532, 543, 690, 460, 348, 338, 368, 387, 307, 280, 274, 336, 354, 319
interJacobsthal-Lucas: [prime:interprime::Jacobsthal-Lucas:?] 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 27, 36, 38, 45, 52, 55, 58, 65, 72, 74, 77, 85, 92, 94, 96, 100, 104, 106, 108, 111, 114, 116, 118, 121, 124, 126, 128, 131, 134, 136, 138, 141, 144, 146, 148, 151, 154, 156, 158, 161, 164, 166, 168, 171, 174, 176, 178, 181
interpodd: [prime:interprime::podd:?] referring to average of consecutive palindromic odd integers -- 2, 4, 6, 8, 10, 22, 44, 66, 88, 100, 106, 112, 117, 136, 146, 156, 166, 176, 186, 247, 308, 318, 328, 338, 348, 358, 368, 378, 388, 449, 510, 520, 530, 540, 550, 560, 570, 580, 656, 712, 722, 732, 742, 752, 762, 772, 782, 853
intwo: number with 2 interiorly, f(z) = a[g(2, [log(b + 2), 10] + b[log(c + 1)] + c -- 120, 121, 123, 124, 125, 126, 127, 128, 129, 320, 321, 323, 324, 325, 326, 327, 328, 329, 420, 421, 423, 424, 425, 426, 427, 428, 429, 520, 521, 523
Ir-ish: containing "ir" -- 13, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 113, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 213
Langford, modified: referring to integers with z digits between digits z including 0 and other single digits -- 0, 101, 2002, 31013, 20121, 12102, 23123, 312132, 23421314, 41312432, 2302131, 1312032
left primorial: A79096 sum of factorials of all prime less than z, #z = (z - 1)# + #(z - 2) -- 1, 3, 9, 39, 249, 2559, 5559, 516069, 10215759, 233308629, 6703001859, 207263491989, 7628001626799, 311878265154009, 13394639596824039, 628284422185315449, 33217442899375360179, 1955977793053587999249
lil: [lucky-indexed-lucky] 1, 7, 11, 29, 199, 5778, 1149851
lime: [sublime backformation] number z such that (z - 1)! < e(A81357 - ½) < z! where A81357 = sublime -- 4, 58, ?
L-ish: containing an "l" -- 11, 12, 111, 112, 211, 212, 311, 312, 411, 412, 511, 512, 611, 612, 711, 712, 811, 812, 911, 912, 1011, 1012, 1111, 1112, 1211, 1212, 1311, 1312, 1411, 1412, 1511, 1512, 1611, 1612, 1711, 1712, 1811, 1812, 1911, 1912, 2011, 2012, 2111, 2112, 2211, 2212, 2211, 2212, 2311, 2312, 2411, 2412, 2511, 2512,
live: [prime:emirp::evil:?] A91017, non-palindromic integer which has an even number of ones in binary and whose reverse does too -- 15, 17, 27, 29, 30, 34, 36, 43, 45, 51, 54, 57, 58, 60, 63, 68, 71, 72, 75, 85, 86, 90, 92, 102, 108,113, 114, 126, 129,132, 135, 139, 144, 147, 150, 159,165,170, 175,177, 192, 195, 197, 198, 201, 204, 210, 216, 219, 226
magic: f(z) = g(99, z, z, z, z - 1, z, z) -- 1, 4, g(99, 3, 3, 3, 2, 3, 3), g(99, 4, 4, 4, 3, 4, 4)
Malu: [prime:emirp:Ulam:?] 1, 2, 3, 4, 6, 8, 11, 26, 28, 62, 77, 82, 99,
middling: referring to integer with only 4, 5 or 6 -- 4, 5, 6, 44, 55, 66, 444, 555, 666, 4444, 5555, 6666, 44444, 55555, 66666, 444444, 5555555, 6666666, 4444444, 5555555, 6666666
middlinger: referring to integer with two of 4, 5 or 6 -- 45, 46, 54, 56, 64, 65, 445, 446, 454, 455, 464, 466, 544, 545, 554, 556, 565, 566, 644, 646, 655, 656, 664, 665, 4445, 4446, 4454, 4456, 4464, 4465
middlingest: referring to integer with all three of 4, 5 or 6 -- 456, 465, 546, 564, 645, 4654, 4456, 4465, 4546, 4564, 4645, 4654, 5456, 5465, 5546, 5564, 5645, 5654, 6456, 6465, 6546, 6564, 6645, 6654
m-ish: containing an "m" -- 1000000, 1000001, 1000003, 1000004, 1000005, 1000006, 1000007, 1000008, 1000009, 1000010, 1000011, ...
more-or-less prime: A45718 f(2z) = p(z) - 1, f(2z - 1) = p(z) + 1 -- 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 40, 42, 44, 46, 48, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 78, 80, 82, 84, 88, 90, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 126, 128, 130, 132, 136, 138, 140, 148, 150, 152, 156, 158, 162, 164, 166, 168, 172, 174, 178, 180, 182, 190, 192,194, 196, 198, 200, 210, 212, 222, 224, 226, 228, 230, 232, 234, 238, 340
mostly evil: A93505 [prime:mostly prime::evil:?] :f(z) = [A1969/2 + ½] -- 0, 2, 3, 3, 5, 5, 6, 8, 8, 9, 10, 12, 12, 14, 15, 15, 17, 17, 18, 20, 20, 22, 23, 23, 24, 26, 27, 27, 26, 26, 30, 32, 33, 33, 34, 36, 36, 38, 39, 39, 40, 42, 43, 43, 45, 45, 46, 48, 48, 50, 51, 51, 53, 53, 54, 56, 57, 57, 58, 60, 60, 62, 63, 63, 65
mostly-harmless: without three-fourths of a, h, m or r -- 0, 4, 8, 14, 18, 24, 28, 40, 41, 42, 45, 46, 47, 49, 54, 58, 64,68, 74, 78, 80, 81,82, 85, 86, 87, 89, 94, 98, 1000000, 1000001, 1000005, 1000006, 1000007,1000009, 1000010, 1000011, 1000012, 1000015, 1000016, 1000017, 1000019, 1000020, 1000021, 1000022, 1000025, 1000026, 1000027, 1000029, 1000050, 1000051, 1000052, 1000055, 1000056, 1000057, 1000059, 1000060
mostly prime: A81385 f(z) = [p/2 + ½] -- 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
*mostly-ugly:
mostly-useless: without two-thirds of e, s or u -- 0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19
multiplicadditive: alternately multiplying by and then adding, f(z) = ((z - 3) + (z - 2))*(z - 1), if z = 0 (mod 2), f(z) = (z - 3)*(z - 2) + (z - 1), if z = 1 (mod 2) -- 1, 1, 2, 4, 6, 18, 21, 84, 88, 440, 445, 2670, 2676, 18732, 18739, 149912, 149920, 1349280, 1349289, 13492890, 13492900, 148421900, 148421911, 1781062932, 1781062944, 2315381272, 23153818285, 324153455990, 324153456004, 4862301840060, 4862301840075, 77796829441200, 77796829441216, 1322546100500670, 1322546100500690
n-est: A72422 -- referring to Aronson-like sequence generated by the sentence, "N est prima littera in hic sententiam, doudevicesima littera in hic sententiam, quarta vicesima littera in hic sententiam, septima vicesima littera in hic sententiam, tertia quinquagentesima littera in hic sententiam ...." 1, 18, 24, 27, 53, 59, 62, 95, 98, 126, 132, 135, 149, 155, 170, 176, 184, 186, 191, 197, 212, 218, 221, 230, 251, 257, 260, 268, 271, 273, 289, 295, 298, 309, 311, 327, 333, 336, 356, 371, 377, 380, 389, 403, 418, 424, 427, 435, 449, 464, 470, 473, 478, 480
neve: [prime:emirp::even:?] A79720 f(z) = 2a, R(f(z)) = 2b, nonpalindromic even integer which is still even when reversed -- 24, 26, 28, 42, 46, 48, 62, 64, 68, 82, 84, 86, 204, 206, 208, 214, 216, 218, 224, 226, 228, 402, 404, 406, 408, 412, 416, 418, 422, 426, 428, 432, 436, 438, 442, 446, 448, 452, 456, 458, 462, 466, 468, 472, 476, 478, 482, 486, 488, 492, 496, 498, 602
nonacci: A104144 Fibonacci-like sequence but adding previous 9, f(z) = f(z - 1) + f(z - 2) + f(z - 3) + f(z - 4) + f(z - 5) + f(z - 6) + f(z - 7) + f(z - 8) + f(z - 9) -- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, 16272, 32512, 64960, 129792, 259328, 518145, 1035269, 2068498, 4132920, 8257696, 16499120, 32965728, 65866496, 131603200, 262947072, 525375999, 1049716729
Nosnora: [Aronson ananym] Aronson number whose reverse is also -- 1, 4, 11, 61, 42, 92, 33, 53, 93, 54, 74, 15, 65, 85, 26, 46, 96, 37, 87, 8, 48, 98, 49, 99, 401, 111, 611, 221, 621, 131, 631, 241, 741, 851, 461, 961, 471, 181, 381, 391, 991, 502, 802, 412, 22, 622, 132, 732, 342, 942, 452, 72, 882, 303, 703, 913, 323
number name as if base 36: A72922 referring to integer resulting from interpreting English name as if in base 36 -- 1652100, 31946, 38760, 49537526, 732051, 724298, 36969, 47723135, 24375809, 1097258, 38111, 882492287, 1807948346, 2310701170991, 1242626638127, 33766692143, 62095095599, 1165465079087, 1137277763375, 1842973464623
number name as if base 27: A72959 referring to integer resulting from interpreting English name as if in Sallows' base 27 -- 11318, 15216, 10799546, 129618, 125258, 14118, 10211981, 2839691, 282506, 14729, 78236429, 299309045, 212445551527, 68884716992, 2457249197, 7503281492, 5427065792075, 55893641747, 150135668600, 299310469
oban: A8521, not containing an "o" -- 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 39, 50, 53, 55, 56, 57, 58, 59, 60, 63, 65, 66, 67, 68, 69, 70, 73, 75, 76, 77, 78, 79, 80, 83, 85, 86, 87, 88, 89, 90, 93, 95, 96, 97, 98, 99, 300, 303, 305, 306, 307
octonacci: A79262 referring to integers formed like Fibonacci numbers, but by adding previous 8, f(z) = f(z - 1) + f(z - 2) + f(z - 3) + f(z - 4) + f(z - 5) + f(z - 6) + f(z - 7) + f(z - 8) -- 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, 16128, 32192, 64256, 128257, 256005, 510994, 1019960, 2035872, 4063664, 8111200, 16190208, 32316160, 64504063, 128752121, 256993248
OEIS: [on-line encyclopedia of integer sequences] A91967, f(z) = Az(z), zth term in zth sequence -- 1, 2, 1, 0, 2, 3, 0, 6, 6, 4, 44, 1, 180, 42, 16, 1096, 7652, 13781, 8, 24000, 119779, 458561, 152116956851941670912
pabelian: [palindromic abelian] 1, 2, 3, 4, 5, 7, 9, 11, 33, 77, 99, 101
pansquare: [g(2, 2, pancake - cake)] f(z) =g(2, 2, (1 + z(z + 1)/2 - (g(2, 3, z) + 5z + 6)/6) -- 0, 1, 16, 400, 3136, 48400, 132496, 665856, 1299600, 4096576, 16483600, 24601600, 71166096, 131790400, 175403536, 615238416, 1171008400, 1430352400, 2511613456, 4202150976, 6750265600, 9079040656, 13801550400, 23133193216, 29480890000, 33161866816, 41679672336, 46578272400, 57822935296, 116537573376
peban: [palindromic eban] 2, 4, 6, 44, 66, 2002, 4004, 6006, 40004, 44044, 60006, 64064, 66066, 2000002, 2002002, 2004002, 2006002, 4000004
peven: [palindromic even] 2, 4, 6, 8, 22, 44, 66, 88, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 606, 616, 526, 636, 646, 656, 666, 676, 686, 696, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 2002
pfibonacci: [palindromic Fibonacci] F(z) = R(z) -- 1, 2, 3, 5, 8, 55,
pflimsy: [palindromic flimsy] 11, 22, 44, 55, 77, 88, 99
phappy: [palindromic happy portmanteau] 1, 7, 44, 262, 313
pheptal: [palindromic heptal] 0, 1, 2, 3, 4, 5, 6, 11, 22, 33, 44, 55, 66, 101, 111, 121, 131, 141, 151, 161, 202, 212, 222, 232, 242, 252, 262, 303, 313, 323, 333, 343, 353, 363, 404, 414, 424, 434, 444, 454, 464, 505, 515, 525, 535, 545, 555, 606, 616, 626, 636, 646, 656, 666,
phex: [palindromic hex] 1, 7, 919, 1081801, 1188811, 1946491
phexal: [palindromic hexal] 0, 1, 2, 3, 4, 5, 11, 22, 33, 44, 55, 101, 111, 121, 131, 141, 151, 202, 212, 222, 232, 242, 252, 303, 313, 323, 333, 343, 353, 404, 414, 424, 434, 444, 454, 505, 515, 525, 535, 545, 555, 1001, 1111, 1221, 1331, 1441, 1551, 2002
Phickover: [pi:phi:Pickover:?] decimal place of first z digits of e in phi -- 20, 65, 1463, 17125
plucky: [palindromic lucky] 1, 3, 7, 9, 33, 99, 111, 141, 151, 171, 303
poctal: [palindromic octal] referring to integer without 8 or 9, such that x = n (base 8), such that n = R(n) -- 0, 1, 2, 3, 4, 5, 6, 7, 11, 22, 33, 44, 55, 66, 77, 101, 111, 121, 131, 141, 151, 161, 171, 303, 313, 323, 333, 343, 353, 363, 373, 404, 414, 424, 434, 444, 454, 464, 474, 505, 515, 525, 535, 545, 555, 565, 575, 606, 616, 626, 636, 646, 656, 666
poddish: A92361 [palindromic oddish] f(z) = ag(2, [g(2, [log(c)] + 1, 10)(2b - 1) + c, 10], 10) + g(2, [log(c)] + 1, 10)(2b - 1) + c = R(f(z)) -- 1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 212, 232, 252, 272, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 414, 434, 454, 474, 494, 505, 515, 525, 535, 545, 555, 575, 595, 616, 636, 656, 676, 696, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 818, 838, 858, 878, 898, 909
podious: [palindromic odioius] A69 = R(A69) -- 1, 2, 4, 7, 8, 11, 22, 44, 55, 88
pring: [palindromic ring] f(z) = (z - 1)(2f(z - 1) + 3f(z - 2))/(z + 1) = R(z) -- 0, 1, 3, 6, 232
Proman: [palindromic Roman] 1, 2, 3, 5, 10, 19, 20, 30, 50, 100, 190, 200, 300, 500, 1000, 1900, 2000, 3000, 5000, 10000, 19000, 20000, 30000, 50000, 100000, 190000, 200000, 300000, 500000, 1000000, 2000000, 3000000, 5000000, 10000000, 19000000, 20000000, 30000000, 50000000, 100000000
psubemirp: [palindromic subemirp] 5, 6, 11, 55, 66, 272, 393, 404, 424, 434
psubminimal:[palindromic subminimal] 0, 1, 2,4, 6, 9, 22, 44, 66, 88, 212, 353, 464
ptriangular: [palindromic triangular] 1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995
quarter-cube: [square:quarter-square::cube:?] f(z) = [g(2, 3, z)/4] -- 0, 2, 6, 16, 31, 54, 85, 128, 182, 250, 332, 432,549, 686, 843,1024, 1228, 1458, 1714, 2000, 2315, 2662, 3041, 3456,3906, 4394, 4920, 5488, 6097, 6750, 7447, 8192, 8984, 9826, 10718, 11664, 12663, 13718, 14829, 16000
Rakerpak: [Kaprekar ananym] referring to integer z such that z = a + b = R(z) and g(2, 2, z) = a10c + b, for some c = 1, a = 0 and 0 = b < g(2, z, 10) , with z! = g(2, a, 10), f(1) = 1 -- 1, 9, 55, 99, 999, 7777, 9999, 22222, 99999,
r-ish: containing an "r" -- 3, 4, 13, 14, 23, 24, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 163, 164, 173, 174, 183, 184, 193, 194, 203
Rollman: referring to integer not non-Rollman -- 12, 23, 31, 34, 41, 42, 45, 51, 52, 53, 54, 56, 61, 62, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 81, 82, 83, 84, 85, 86, 89, 91, 92, 93. 94, 95, 96, 97, 98,
Roman numeral as base-27: A73427 -- referring to integer transformed to Roman numeral then interpreted as if in Sallows' base 27 -- 9, 252, 6813, 265, 22, 603, 16290, 439839, 267, 24, 657, 17748, 479205, 17761, 670, 18099, 488682, 13194423, 17763, 672, 18153, 490140, 13233789, 490153, 18166, 490491, 13243266, 357568191, 490155, 18168, 490545, 13244724, 357607557
Roman numeral as base-36: A73421 -- referring to integer transformed to Roman numeral then interpreted as if in base 36 -- 18, 666, 23994, 679, 31, 1134, 40842, 1470330, 681, 33, 1206, 43434, 1563642, 43974, 1221, 43974, 1583082, 56990970, 1583095, 43987, 1583550, 57007818, 2052281466, 1583097, 43989, 1583622, 57010410, 2052374778, 57010423, 1583635
s-ain't: A72886 referring to integer generated like the Aronson series from a generating sentence, "S ain't the second, third, fourth, fifth . . . letter of this sentence.". 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
satyr: [sort-add-then-you-reverse] f(z) = R(sort(z) + z) -- 2, 4, 6, 8, 1, 21, 41, 61, 81, 11, 22, 42, 62, 82, 3, 23, 43, 63, 83, 4, 42, 44, 46, 48, 5, 66, 77, 88, 99, 11, 112, 114, 116, 118, 66, 77, 88, 99, 11, 112, 123, 1, 134, 136, 138, 77, 88, 99, 11, 112
selfish: [9:9-ish::self:?] contains a self-number string not of the form b + Sd(b)), f(z) = ag(2, [g(2, [log(c)] + 1, 10)N(b + Sd(b)) + c, 10], 10) + g(2, [log(c)] + 1, 10)N(b + Sd(b)) + c -- 1, 3, 5, 7, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110, 111, 112, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 143, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 163, 165,167, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 183, 185, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209
selfless: referring to integers, f(z) = N(x + S(d(i))) -- 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 110, 112, 114, 116, 118, 120
semi-Tribonacci: [Fibonacci:semi-Fibonacci::Tribonacci:?] A74364 f(0) = 0, f(1) = 1; f(2x) = f(x), f(2x + 1) = f(2x) + f(2x - 1) + f(2n - 2) -- 0, 1, 1, 2, 1, 4, 2, 7, 1, 10, 4, 15, 2, 21, 7, 30, 1, 38, 10, 49, 4, 63, 15, 82, 2, 99, 21, 122, 7, 150, 30, 187, 1, 218, 38, 257, 10, 305, 49, 364, 4, 417, 63, 484, 15, 562, 82, 659, 2, 743, 99, 844, 21, 964, 122, 1107, 7, 1236, 150, 1393, 30, 1573, 187, 1790, 1, 1978, 218, 2197, 38, 2453, 257, 2748, 10, 3015, 305, 3330, 49, 3684, 364, 4097, 4, 4465, 417, 4886, 63, 5366, 484, 5913, 15, 6412, 562, 6989, 82, 7633, 659, 8374, 2, 9035743, 9780, 99, 10622, 844, 11565, 21, 12430, 964, 13415
s-inner: A72887 referring to integer not s-ain't -- 1, 9, 31, 36, 98, 107, 156, 164, 210, 221, 266, 312, 358, 365, 405, 415, 460, 467, 509, 519, 548, 556, 564, 566, 571, 577, 587, 598, 608, 613, 618, 623, 630, 641, 651, 661, 671, 673, 680, 686, 698, 711, 723, 730, 735, 742, 749, 762, 774, 792, 800
slices of pi: A16062 -- digital expansion of pi such that f(z) > f(z -1) -- 3, 14, 15, 92, 653, 5897, 9323, 84626, 433832, 795028, 841971, 6939937, 51058209, 74944592, 307816406, 2862089986, 28034825342, 1170679821480, 8651328230664, 70938446095505, 82231725359408, 128481117450284, 1027019385211055
sodd: [sort-odd] 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 12, 23, 25, 27, 29, 13, 33, 35, 37, 39, 14, 34, 45, 47, 49, 15, 35, 55, 57, 59, 16, 36, 56, 67, 69, 17, 37, 57, 77, 79, 18, 38, 58, 78, 89, 19, 39, 59, 79, 99, 11, 13, 15, 17, 19, 112, 123, 125, 127, 129, 113
spiro-Tribonacci: A92360, f(z) = f(z - 1) + f(a) + f(b), such that f(a) and f(b) are nearest when terms are arranged in a spiral. In the case of a tie in nearness, the chronologically nearer value is used. -- 0, 1, 1, 3, 5, 8, 13, 14, 28, 43, 45, 89, 135, 138, 143, 284, 430, 438, 451, 897,1356, 1404, 1446, 2878, 4352, 4423, 4511, 4645, 9245, 13979, 14203, 14476, 14757, 15184, 30225, 45693, 46407, 47275, 48164, 49512, 98573, 148982, 151235, 153968, 156749, 159599, 163923, 326400, 493201, 500431, 509206, 518140, 527296, 541186, 1077727, 1628158, 1651382, 1679564, 1708243, 1737476, 1767417, 1812826, 3610468, 5453519
spiro-Tetronacci: A92369, f(z) = f(z - 1) + f(a) + f(b) + f(c), such that f(a), f(b) and f(c) are nearest when terms arranged in a spiral. In the case of a tie in nearness, the chronologically nearer value is used. -- 0, 1, 1, 1, 3, 5, 9, 15, 25, 41, 68, 111, 181, 294, 299, 597, 900, 1505, 1522, 3041, 4577, 7642, 7691, 7772, 15529, 23367, 39005, 39225, 39585, 79102, 118979, 198556, 199330, 200520, 202316, 404333, 608146, 1013976, 1017903, 1023971, 1033111, 2064700, 3105429, 5177747, 5197657, 5220762, 5251754, 5298422, 10589072, 15926390, 26577834, 26679431, 26797246, 26955158, 27192824, 543446063, 81736968
Squaran: [cube:Cuban::square:?] f(z) = (p - 1)/2 -- 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 26, 29, 30, 33, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135
subcarmichael: [factorial:subfactorial::Carmichael:?] 206, 407, 636, 907, 1038, 2428, 3278, 3894, 5828, 10794, 15098, 17164, 19363, 23083, 23534, 27724, 37193, 42645, 46433, 59744, 63305, 69331, 92927
subcube: [factorial:subfactorial::cube:?] [g(2, 3, z)/e + 1] -- 0, 3, 10, 24, 46, 79, 126, 188, 268, 368, 490, 636, 808, 1009, 1242, 1507, 1807, 2145, 2523, 2943, 3407, 3917, 5086, 5748, 6466, 7241, 8076, 8972, 9933, 10959, 12055, 13220, 14459, 15773, 171164, 18634
subdecacci: [factorial:subfactorial::decacci:?] 0, 1, 1, 3, 6, 12, 24, 47, 94, 188, 376, 752, 1504, 3006, 6010, 12013, 24015, 48007, 95967, 191839, 383489, 766602, 1532452, 3063401, 6123795, 12241580, 24471146, 48918277
subdemlo: [factorial:subfactorial::Demlo:?] 0, 45, 4533, 454081, 45416307, 4541712413, 454172058760, 45417214051093, 4541721486860290
subdodecahedral: [factorial:subfactorial::dodecahedral:?] 0, 7, 31, 81, 167, 300, 489, 745, 1076, 1494, 2007, 2627, 3362, 4223, 5220, 6363, 7661, 9125, 10764, 12589, 14609, 16834, 19275, 21940, 24841, 27987
subdowling:[factorial:subfactorial::Dowling:?] 0, 1, 5, 53, 681, 10140, 174274, 3417746, 74953683, 1807204214, 47374658135, 1340216472714
subemirp: [factorial:subfactorial::emirp:?] 5, 6, 11, 14, 26, 27, 29, 36, 39, 55, 58, 61, 66, 73, 114, 124, 128, 132, 143, 258, 261, 270, 272, 273, 276, 280, 283, 334, 345, 346, 351, 356, 357, 362, 365, 371, 376, 379, 390, 393, 401, 404, 406, 408, 423, 424, 434, 439
subeuler: [factorial:subfactorial::Euler:?] 0, 1, 2, 6, 22, 100, 510, 2929, 18586, 130153, 994292,
subfortunate: [factorial:subfactorial::fortunate:?] 1, 2, 3, 5, 8, 6, 7, 8, 14, 22, 25, 22, 26, 17, 39, 22, 22, 40, 33, 38, 29, 56, 72, 37, 38, 82, 82, 47, 82, 70, 60, 84, 237, 88, 58, 61, 161, 88, 73, 70, 73, 141, 86, 276, 115, 284, 223, 115, 141, 108, 163, 122, 104, 102, 100, 148, 113, 122
subfranel: {factorial:subfactorial::Franel:?] 0, 1, 4, 20, 127, 828, 5586, 38613, 271923, 1942746, 14040215, 102423489, 753021404, 5572764973, 41474148184, 310169073798, 2329522847111, 17561580656514
subharmonic: [factorial:subfactorial::harmonic:?] 0, 2, 10, 52, 99, 182, 247, 603, 1093, 2281, 2990, 3013, 6843, 6850, 10244, 11125, 12052, 20550, 38872, 43336, 61583, 63864, 87375, 89049, 122371, 132569, 198434, 255868, 267147, 277190, 349845, 400720, 522860, 566431
subJacobsthal-Lucas: [factorial:subfactorial:: subJacobsthal-Lucas:?] 0, 2, 3, 6, 11, 24, 47, 95, 188, 377, 753, 1507, 3013, 6028, 12054, 24110, 48218, 96438, 192874, 385750, 771499, 1542999, 3085996, 6171993, 12343985, 24687972, 49375942, 98751886, 197503771, 395007543, 790015084, 1580030169, 3160060337, 6320120675, 12640241349, 25280482700, 50560965398, 101121930797, 202243861594, 404487723188, 808975446375,
sublah: [factorial:subfactorial::Lah:?] [(n - 1)n!/2e + ½] -- 0, 2, 13, 88, 662, 5562, 51915, 533984, 6007324, 73422850, 969181625, 13744757592, 208462156818, 3367465610138, 57727981888087, 1046800738237310
submarkoff: [factorial:subfactorial::Markoff:?] 0, 1, 2, 5, 11, 13, 33, 62, 71, 86, 159, 224, 362, 487, 588, 1066, 1538, 2112, 2379, 2782, 3339, 4027, 5408, 10542, 12310, 13857, 15915, 18998, 22886, 27600, 35521, 49714, 71746, 72258, 108409, 156860, 183716, 189174, 237657
subminimal: [factorial:subfactorial::minimal:?] A79717 -- 0, 1, 1, 2, 4, 6, 9, 13, 18, 22, 24, 44, 53, 66, 71, 88, 132, 212, 265, 309, 331, 353, 377, 464, 477, 618, 927, 1059, 1130, 1324, 1507, 1854, 1907, 2318, 2384, 2472, 2781, 3390, 3708
submodest: [factorial:subfactorial::modest:?] 5, 7, 8, 10, 11, 14, 17, 18, 22, 18, 22, 25, 29, 33, 38, 40, 41, 49, 76, 77, 78, 80, 82, 86, 98, 110, 114, 120, 123, 147, 149, 151, 152, 154, 155, 159, 160, 163, 171, 184, 187, 188, 189, 196, 200, 204, 220, 224, 225, 227, 229, 231
subpeban: [factorial:subfactorial::peban:?] 1, 2, 16, 24, 736, 1473, 2209, 16203, 24304, 735760, 736495, 1471519, 1472991, 2207279, 2209486, 16186712, 24280067, 735758883, 1471517766, 2207276649
subperfect: [factorial:subfactorial::perfect:?] 2, 10, 182, 2990, 12342479, 3160036228, 50560868961, 848272237263603328
subphexagonal: [factorial:subfactorial:phexagonal:?] 0, 2, 24, 1105, 2205, 5537, 24304, 227245, 304909, 467067, 618354
subpodd: [factorial:subfactorial::podd:?] 0, 1, 2, 3, 3, 4, 12, 20, 28, 36, 37, 41, 45, 48, 52, 56, 59, 63, 67, 70, 111, 115, 119, 123, 126, 130, 134, 137, 141, 145, 186, 189, 193, 197, 200, 204, 208, 212, 215, 219
subprimorial: [factorial:subfactorial::primorial:?] A79266 [z#/e + ½] -- 0, 1, 2, 11, 77, 850, 11047, 187806, 3568317, 82071280, 2380067130, 73782081030, 2729936998040, 111927416922654, 4812878927674130
subsquare: f(z) = [g(2, 2/e, z) + ½] -- 0, 1, 3, 6, 9, 13, 18, 24, 30,37, 45, 53, 62, 72, 83, 94, 106, 119, 133, 147, 162, 178, 195, 212, 230, 249, 268, 288, 309, 331, 354, 377, 401, 425, 451, 477, 504, 531, 560, 589, 618, 649, 680, 712, 745, 778, 813, 848, 883, 920, 957
subulysses: [factorial:subfactorial::Ulysses:?] 0, 6, 2.805300541375g(2, 12, 10), > 4.932456888g(2, 153, 10)
suburban: A72955 referring to integer without b, r, s or u -- 1, 2, 5, 8, 9, 10, 11, 12, 15, 18, 19, 20, 21, 22, 25, 28, 29, 50, 51, 52, 55, 58, 59, 80, 81, 82, 85, 88, 89, 90, 91, 92, 95, 98, 99, 1000000, 1000001, 1000002, 1000005, 1000008, 1000009, 1000010, 1000011, 1000012, 1000015,1000018,1000019,1000020
supercake: [factorial:superfactorial::cake:?] referring to the product of previous cake integers, f(n) = P((g(2, 3, z) + 5z + 6)/6) -- 1, 2, 8, 64, 960, 24960, 1048320, 67092480, 6239600640, 811148083200, 142762062643200, 3140765378150400, 939088848066969600
supercats: [factorial:superfactorial:CATS:?] 2, 6, 408, 5304, 1177488, 41212080, 1030302000, 389454156000, 4283995716000, 5286450713544000
supercomposite: [factorial:superfactorial::composite:?] referring to integers which are the product of first n composite integers -- 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
supercube: [factorial:superfactorial::cube:?] referring to product of previous cubes, f(z) = Pg(2, 3, z) -- 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869624000000
supercurious: [factorial:superfactorial::curious:?] 1, 5, 30, 750, 57000, 21432000, 13395000000, 125591520000000, 11381731500000000000
supereuler: [factorial:superfactorial::Euler:?] 1, 2, 10, 160, 9760, 2654720, 3676787200, 29178983219200
supereven: [factorial:superfactorial::even:?] f(z) = P(2z) -- 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 142832913020800
superfortunate: {factorial:superfactorial::fortunate:?] referring to product of previous fortunate integers -- 3, 15, 105, 1365, 31395, 533715, 10140585, 233233455, 8629637835, 526407907935, 35269329831645, 2151429119730350, 152751467500854496, 7179318972540161024, 768187130061797179392, 45323040673646030716928
superjacobsthal-Lucas: [factorial:superfactorial::Jacobsthal-Lucas:?] 1, 5, 35, 595, 18445, 1198925, 152263475, 39131713075, 19996305381325
superkolakoski: [f(z) = A2f(z - 1) -- 1, 2, 4, 4, 4, 8, 8, 16, 32, 32, 64, 128, 128, 128, 256, 256, 256, 512, 1024, 1024, 2048, 2048, 2048, 4096, 4096, 8192, 16384, 16384, 16384, 32768, 32768, 32768, 65536, 65536,
superménage: [factorial:superfactorial:: ménage:?] referring to product of previous non-zero menage integers -- 3, 39, 3237, 1916304, 9238501584, 406300061162736, 180646289093747539968
supermersenne: [factorial:superfactorial::Mersenne:?] referring to product of previous Mersenne integers, f(z) = PM(i) = Pg(2, p(i), 2) - 1) -- 3, 21, 651, 82677, 169239819, 1386243357429, 181696303101576448
super-1: [3:1::super-3:?] z such that 2z contains "1" -- 5, 6, 7, 8, 9, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 105, 106, 107, 108, 109, 500, 501, 502, 503, 504, 505, 506, 507, 508
super-2: [3:2::super-3:?] z such that 2g(2, 2, z) contains "22" -- 19, 31, 69, 81, 105, 106, 107, 119, 127, 131, 169, 181, 190, 231, 247, 269, 281,
superpancake: [factorial:superfactorial::pancake:?] referring to product of previous pancake integers, f(z) = (z(z + 1)/2 + 1)f(z - 1) -- 2, 8, 56, 616, 9856, 216832, 6288128, 232660736, 10702393856, 599334055936, 40155381747712, 3172275158069250, 291849314542370816
superpodd: [factorial:superfactorial::podd:?] f(z) = P(2z + 1) = P(R(2z + 1)) -- 1, 3, 15, 105, 945, 10395, 343035, 18866925, 1452753225, 143822569275, 14526079496775, 1612394824142020
superprimorial: A79264 referring to product of first z primorials, f(z) = zs# = z#(z - 1)s# -- 1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000
supersmarandache: [factorial:superfactorial::Smarandache:?] referring to product of Smarandache sequence integers -- 2, 8, 32, 160, 480, 3360, 13440, 80640, 403200, 4435200, 17740800, 230630400, 1614412800, 8072064000, 137225088000, 823350528000, 15643660032000, 7821830016000, 547528101120000, 6022809112320000, 138524609583360000
supersquare: [factorial:superfactorial::square:?] referring to product of previous squares, f(z) = g(2, 2, z)f(z - 1) = g(2, 2, z!) -- 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 220442532802560000, 38775788043632640000, 7600054456551997440000
superstar: f(z) = Pi(3i - 2) -- 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000
supervampire: [factorial:superfactorial::vampire:?] referring to product of previous vampire integers -- 126, 19278, 13263264, 15995496384, 20074347961920, 25293678432019200, 35284681412666785792
taliban: [a:tali::aban:?] A72954 referring to integer without a, i, l or t -- 0, 1, 4, 7, 64, 100, 101, 104, 107, 343, 401, 404, 407, 700, 701, 704, 707
t-est: A72423 referring to integer generated by generating sentence, "T est prima et quarta et undecima et sexima decima et nona decima et nona vicesima ... littera in hic sententiam." -- 1, 4, 11, 16, 19, 29, 33, 42, 56, 70, 71, 74, 77, 87, 105, 109, 121, 128, 132, 142, 151, 161, 166, 171, 181, 185, 192, 202, 207, 212, 219, 227, 234, 251, 258, 261, 276, 283, 291, 313, 320, 343, 350, 366, 375, 382, 401, 408, 412, 427, 434, 443, 455, 462
tetrational factorial: f(z) = g(3, f(z - 1), z) -- 1, 2, 9, g(3, 9, 4) > g(2, 153, g(3, 5, 10))
toscodicity: A72420 minimum number of steps needed to transform the integer into 153 by the triple-or-sum-of-cube-of-digits (TOSCOD) operator, f(z) -- 4, 4, 3, 5, 4, 3, 5, 4, 3, 4, 5, 4, 4, 4, 3, 7, 2, 2, 4, 4, 4, 6, 4, 3, 6, 5, 2, 7, 5, 3, 4, 4, 5, 5, 3, 3, 5, 5, 3, 5, 4, 3, 5, 5, 2, 6, 5, 6, 6, 4, 1, 6, 3, 2, 6, 5, 3, 6, 3, 3, 7, 5, 3, 6, 5, 5, 4, 4, 3, 5, 2, 2, 5, 5, 3, 4, 5, 4, 5, 4, 2, 7, 7, 6, 6, 4, 4, 5, 4, 3, 4, 5, 3, 6, 3, 3, 5, 4, 4, 4
*triple-digit inflation: digital expansion in which f(d(z)) = 3d(z) -- 1, 3, 9, 27, 621, 1863, 324189, 961232427, 2718369612621, 6213249182718361863, 1863961227324621324918324189, 3241862718366219612186361227324961232427, 9612324186213249181863271836324189183662196122718369612621
turban: A72956 without letters r, t, or u.-- 1, 5, 6, 7, 9, 11, 1000000, 1000001, 1000005, 1000006, 1000007, 1000009, 1000011, 5000000, 5000001, 5000005, 5000006, 5000007, 5000009, 5000011, 6000000, 6000001, 6000005, 6000006, 6000007, 6000009, 6000011, 7000000, 7000001
uban: [e:u:eban:?] 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45. 46. 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70
uglier: number divisible only by 6, 10, or 15 f(z) = 0 (mod 6, mod 10 or mod 15) -- 6, 10, 12, 15, 18, 20, 24, 30. 36, 40, 45, 48, 50, 54, 60, 70,72, 75, 80, 90, 96, 100, 108, 120, 135, 144, 150, 160, 174, 180, 186
ugliest: f(z) = 60z -- 30, 60, 90, 120, 180, 240, 270, 300, 360, 420, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1260, 1350
uple: [nonuple backformation] f(z) N= 0 (mod 9) -- 0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 70, 71, 73, 74, 75, 76
urban: A72957 referring to integer without r or u -- 1, 2,5, 6,7, 8,9, 10,11, 12,15, 16,17, 18,19, 20, 21, 22, 25, 26, 27, 28, 29, 50, 51, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 1000000, 1000001, 1000002
useless: A73418 -- referring to integer without e, s or u -- 2, 40, 42, 50, 52, 90, 92, 200, 240, 242, 250, 252, 290, 292, 2000000, 2000002, 2000040, 2000042, 2000050, 2000052, 2000090, 2000092, 2000200, 2000240, 2000242, 2000250, 2000252, 2000290, 2000292, 40000000, 40000002, 40000040
vampirish: numbers with a vampire string -- 126, 153, 688, 1126, 1153, 1206, 1255, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1395, 1435, 1503, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1688, 1827, 2126, 2153, 2187, 2688, 3126, 3153, 3159, 3688, 3784, 4126, 4153, 4688, 5126, 5153, 5688, 6126, 6153, 6688, 6880, 6881, 6882, 6883, 6884, 6885, 6886, 6887, 6888, 6889, 7126, 7153, 7688
v-ish: containing a "v" -- 5, 7, 11, 12, 25, 27, 35, 37, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 87, 95, 97, 105, 107, 111, 112, 125, 127, 135, 137, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 165, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 185, 187, 195, 197, 205
worthless: A73419 referring to integer without h, o, r, t, or w -- 5, 6, 7, 9, 11, 55555 (read as five fives), 66666, 77777, 99999, 555555, 666666, 777777, 999999, 5555555, 6666666, 7777777,9999999, 555555555, 666666666, 777777777, 999999999, 1111111111, 55555555555, 66666666666, 77777777777, 99999999999, 111111111111, 11111111111111, 111111111111111111, 1111111111111111111111, 5555555555555555555555555,
ylgu: [prime:emirp::ugly:?] number divisible by only by 2, 3 or 5, whose reverse is also f(z) = 0 (mod 2, mod 3, or mod 5) and R(f(z) = 0 (mod 2, mod 3, or mod 5) -- 1, 2, 3, 4, 5, 6, 8, 9, 10, 20, 27, 30,40, 45, 50, 54, 60, 72, 80, 81, 90,100, 108,
Zeckendorp expansion: A93712 [Fibonacci:prime:Zeckendorf:?] f(z) = z written abbreviatedly as strings of decreasing primes -- 1, 2, 3, 31, 5, 51, 7, 71, 72, 73, 11, 111, 13, 131, 132, 133, 17, 171, 19, 191, 192, 193, 23, 231, 232, 233, 2331, 235, 29, 291, 31, 311, 312, 313, 3131, 315, 37, 371, 372, 373, 41, 411, 43, 431, 432, 433, 47, 471, 472, 473, 4731, 475, 53, 531, 532, 533, 5331, 535, 59, 591, 61, 611, 612, 613, 6131, 615, 6151, 617, 6171, 6172, 71
zth z in pi: A101196 -- 1, 16, 17, 36, 48, 72, 96, 74, 55, 854, 709, 1080, 1076, 1636, 1657, 1651, 889, 1674, 1227, 2039, 1486, 2372, 2690, 2288, 2033, 2282, 1785, 2703, 4155, 3102, 3584, 3767, 4325, 3808, 3551, 4081, 3785, 3229, 4464, 4884, 4127, 4228, 5336, 3961, 4242, 3633, 4571, 3868, 4356, 5835