index
André Joyce Fan Club   |   Dominissimo   |   Googology   |   Hierogonometry   |   Jootsy Calculus   |   links   |   Laws   |   Merology   |   neologisms   |   non-Najunamarian   |   Pataphysics   |   Sequences   |   transfinites   |   trazillion   |   zerology
Oology
translated by Michael Joseph Halm
copyright 1978-2004 Hierogamous Enterprises

   It was in 1915 that P. E. B. Jourdain translated and so popularized Georg Cantor's work with transfinite cardinal numbers (such as aleph-null and aleph-one) and only in 1963 when B. S. Johnson defined the square root of aleph-one. In 1972 when John Horton Conway defined surreal numbers (see Mpossibilities 31:4), using the me mathematics changed. Many undefined terms suddenly were definable. The number of kinds of infinities increased more than infinitely.
   Making use of the computerese (and roulette) 00 (double zero) for the first inaccessible number and the equally familiar computerese, \ (backslash), for ciscendentals, enfinities, enrationals, arrationals (Mpossibilities 68:1, neologisms) seems to make surreal mathematics easier by an aleph-nullth. [That's a word you probably don't see every day.]
  Here're other surreals anglicized from Transfini Mathematiques pur Surreel Amateurs de Rôles Muet by André Joyce:
. . . 00.1 = 00 + .1 = 1\1 [read as "one conquered by one" (as opposed to "divided by" from phrase "divide and conquer"), or "one under one"]
. . . 001 = 00 + 1 = 10\1
. . . 002 = 00 + 2 = 5\1
. . . 003 = 00 + 3 = 10\3
. . . 012486374987513625012486374987513625 = 19\10
. . . 03193712565968062874340319371256596806287434 = 23\10
. . . 032967032967 = 13\10
. . . 06287434031937125659680628743403193712565968 = 23\20

. . . 329670329670 = 13\1
. . . 331 = (G(2, 00, 10) - 1)/3 -2 = 15\2
. . . 33 = (G(2, 00, 10) - 1)/3 = 3\1
. . . 335 =  3\1 + 2 = 15\8
. . . 337 = 3\1 + 4 = 15\11

. . . 967032967032 = 13\3
. . . 96806287434031937125659680628743403193712565 = 23\13
. . . 987513625012486374987513625012486374 = 19\9
2\2 = 2(00) + 0.2
4\4 = (2\2)(2\2) = G(2, 2, (2(00) + .2))
5\5 = 5(00) + 0.5
7\7 = 7)00) + 0.7
8\8 = (2\2)(2\2)(2\2) = G(2, 3, (2(00) + .2))
. . . 99001 = G(2, 10^00, 10) - 999 = ooduplexminim
. . . 99501 = G(2, 00, 10) - 499 = ooplexminid
. . . 9901 = G(2, 00, 10) - 99 = ooplexminic
. . . 9951 = G(2, 00, 10) - 49 = ooplexminil
. . . 991 = G(2, 00, 10) - 9 = ooplexminix
. . . 996 = G(2, 00, 10) - 4 = ooplexminiv
. . . 998 = G(2, 00, 10) - 2 = ooplexminij
. . . 99 = G(2, 00, 10) - 1 = 3\3 = ooplexmini
(00^2 + 1)/00 = garoopliperoo = infiniti [Steven John Robinson]

                 angelic numbers
    (numbers ending in infinite number of zeroes)
100. . . 00 = 10^00 = ooplex
1000. . .00 = 10^10(00) = xooplex
10000. . .00 = 10^100(00) = cooplex
100000. . .00 = 10^1000(00) = mooplex
10^(10^00) = ooduplex
10^(10^(10^00)) = ootriplex
10^00^^2 = ooplexpleooplex
   Beyond these are what might be called the archangelic numbers:
00^00 = 00^^2 = G(3, 2, 00) = oopleoo
00^^00 = G(3, 00, 00) = G(4, 2, 00) = aleph-one
(00^^00)^^(00^^00) = G(2, 4, 2, 00) = aleph-two
G(00, 4, 2, 00) = aleph-aleph-null
   Even when we have reached
G(00, 00, 00, 00, 00, 00)
we are alas negligibly closer to ultimate infinity, the Most High W.

for more see Let Us Remember André Joyce