André Joyce Fan Club | Dominissimo | Googology | Hierogonometry | Jootsy Calculus | links | Laws | Merology | neologisms | non-Najunamarian | Pataphysics | Sequences | transfinites | tranillion | nerology
Sequences
Some of the sequences referenced in the club's other pages are named and further explained here. Some, those with an "A number", are officially recognized by the On-line Encyclopedia of Integer Sequences, OEIS. Those with an asterisk were submitted by members of the André Joyce Fan Club.
aban: [e:a::eban:?] referring to integers without an "a" -- 0, 1, 2, 3, ... , 999, 1000000, 1000001, ... , 1000999, 2000000, 2000001, ... , googol, ..., googolplex, ...
Abntu: ["ab-'n-too", Bantu (ban two) alphome] A072809 alphadigital Bantu, with digits in alphabetical order, namely, 8, 5, 4, 9, 1, 7, 6, 3, 0
acci: [nonacci backformation] integer not nonacci, A104144, a(n) ≠ a(n - 1) + a(n - 2) + a(n - 3) + a(n - 4) + a(n - 5) + a(n - 6) + a(n - 7) + a(n - 8) + a(n - 9)-- 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, ...
agonal: [nonagonal backformation] integer not nonagonal a(n) = N(n(7n - 5)/2) -- 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, ...
all-base inventory: inventory of n in all bases n to one -- 1, 10, 11, 10, 11, 111, 10, 11, 100, 1111, 10, 11, 12, 101, 11111, 10, 11, 12, 20, 110, 111111, 10, 11, 12, 13, 21, 111, 1111111, 10, 11, 12, 13, 20, 22, 1000, 11111111, 10, 11, 12, 13, 14, 21, 100, 1001, 1111111111, 10, 11, 12, 13, 14, 20, 22, 101, 1010, 1111111111, 10, 11, 12, 13, 14, 15, 21, 23, 102, 1011, 11111111111, 10, 11, 12, 13, 14, 15, 22, 24
almost Beethoven: digital expantion of Beethoven -- 2, 1, 3, 6, 5, 5, 6, 0, 6, 7, 6, 8, 9, 2, 9, 3, 1, 2, 5
*almost-perfect: A079718 digital expansion of perfect numbers
alphadigital: referring to integer with digits in alphabetical order --10, 11, 12, 13, 41, 51, 16, 17, 81, 91, 20, 12, 22, 32, 42, 52, 62, 72, 82, 92, 30, 13, 32, 33, 43, 53, 63, 73, 83, 93, 40, 41, 42, 43, 44, 54, 46, 47, 84, 49, 50, 51, 52, 53, 54, 55, 56, 57, 85, 59, 60, 16, 62, 63, 46, 56, 66, 67, 68, 69, 70, 17, 72, 73, 47, 57, 76, 77, 87, ...
*anti-numberdromes, odd-digited:, A093472
*Babylonian reciprocal: ["igibum"] A094086 number which when multiplied by nth ugly number gives a power of sixty, a(n) = g(2, [log(n)/log(60)], 60)/A51037(n)
*Bantu: [ban two] A052404 referring to integer without 2
Begöl: [alphadigital Göbel] 1, 2, 3, 5, 10, 82, 541, 5320, 8855110, 591777663220, 5544911176666332220000
beta Centauri: [alpha:alpha Centauri::beta:?] tridigital expansion of p - 3, a(n) = [g(2, (3n + 3)(p -3), 10] - [g(2, 3n, 10)(p - 3)] -- 141, 592, 653, 589, 793, 238, 462, 643
reversed binary in decimal: a(n) = R(n (base 2)) (base 10) -- 0, 1, 1, 3, 2, 5, 2, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 112, 9, 73, 41, 105, 25, 89, 57, 121, 5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125, 3, 67, 35, 99, 19
biographical: referring to integer which tallies one or more other integers' digits left-to-right from n zero a(n) = #(d(n) = 0)g(2, d(n\n), 10), 10 + #(d(n) = 1)g(2, (d(n) - 1), 10) + ... + #(d(n) = 9) -- 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, ..., 9999999999
bipolar: with only minimum and maximum digits, a(n) = 9Sg(2, a, 10) > , where i = 0 or 1 -- 90, 900, 909, 990, 9000, 9009, 9090, 9099, 9900, 9909, 9990, 90000, 90009, 90090, 90099, 90900, 90909, 90990, 90999, 99000, 99009, 99090, 99099, 99900, 99909, 900000, 900009, 900090, 900099
*Caliban: [a:aban::cali:?] A072958 referring to integer without a, c, i or l
*cancrine: A081365 word-palindrome number
cheaper: : referring to integers with any two of 1, 2 or 3, -- 12, 13, 21, 23, 31, 32, 112, 113, 121, 122, 131, 133, 211, 212, 221, 223, 232, 233, 311, 313, 322, 323, 1112, 1113, 1121, 1122, 1211, 1212,
cheapest: : referring to integers with 1, 2 and 3 only -- 123, 132, 213, 231, 312, 321, 1123, 1132, 1213, 1231, 1312, 1321, 2123, 2132, 2213, 2231, 2312, 2321, 3123, 3132, 3213, 3231, 3312, 3321, 11123, 11132, 11213, 11231, 11312, 11321, 12123, 12132, 12213, 12231, 12312, 12321
*Collatz, modified: A072761 referring to modified Collatn sequence allowing change of x to 3x + 1 even when x = 2n
consonant-tailed: NA79741 integer with name ending in consonant -- 4, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 24, 26, 27, 28, 34, 36, 37, 38, 44, 46, 47, 48, 54, 56, 57, 58, 64, 66, 67, 68, 74, 76, 77, 78, 84, 86, 87, 88, 94, 96, 97, 98, 100, 104, 106, 107, 108, 110, 111, 113, 114, 115, 116, 117, 118, 119, 124, 126, 127, 128, 134, 136, 137
cubefull: [square:squarefull::cube:?, Paul Erdos and G. Szekeeres] A036966 referring to integer divisible by a prime cubed, a(n) = 0 (mod g(2, 3, p)
*curvaceous: A072960 referring to integer written with curves only, i. e., with 0, 3, 6, 8 or 9
*curvilinear: A072961 referring to integer which is both curved and linear, i. e., 2 or 5
dear: A2045020 referring to integers with 7, 8, or 9 but not two -- 7, 8, 9, 77, 88, 99, 777, 888, 999, 7777, 8888, 9999, 77777, 88888, 99999, 777777, 8888888, 999999, 7777777, 8888888, 9999999, 77777777, 88888888, 99999999
dearer: A245019 referring to integers with any two of 7, 8, or 9 -- 78, 79, 87, 97, 98, 778, 787, 788, 877, 878, 887, 977, 979, 997, 7778, 7779, 7787, 7788, 7797, 7799, 7877, 7878, 7977, 7979, 8777, 8778, 8787, 8788,
dearest: A0245018 with only 7s, 8s, and 9s -- 789, 798, 879, 897, 978, 987, 7789, 7798, 7879, 7889, 7897, 7898, 7899, 7978, 7987, 7989, 7998, 8779, 8789, 8797, 8798, 8799, 8879, 8897, 8977, 8978, 8979, 8987, 8997,
decacci: [Roger Bagula and Gary W. Adamson] A122265 Fibonacci-like sequence but adding previous 10, a(n) = a(n - 1) + a(n - 2) + a(n - 3) + a(n - 4) + a(n - 5) + a(n - 6) + a(n - 7) + a(n - 8) + a(n - 9) + a(n - 10)
decinary reversal: [David W. Wilson] A030101 alternating between base 2 and base 10 reversing between a(n + 1) = R(a(n)(base 2)) (base 10)
*DENEAT: A073053 referring to integer generated by application of DENEAT (digits-even-not-even-and-total) operator, a(n) = 100(#(d(x))) + 10(#(d(y)) + #(d(n)) where d(x) = 0 (mod 2) and d(y) = 1 (mod 2)
*deneaticity: A073054 referring to number of applications of DENEAT (digits-even-not-even-and-total) operator needed to reduce n to 123, a(n) = #(DENEAT(n))
*Diephi: [Diep + phi] A093473 next n digits of phi
digital power: [addition:exponentiation::digital sum:?, Reinhard Zumkeller] A075877 a(n) = Pd(i), g(2, d(i + 1), where n = Sg(2, i, 10)d(i) -- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 3, 9, 27,
digital product: [addition::multiplication::digital sum:?, R. Miller] A007954 a(n) = P(d(i)), where n = Sg(2, i, 10)d(i) -- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3,
d-ish: containing a "d" -- 100, 101, 102, 103, 104, 105, 106, 107, ,,,, 999999, 1000100, 1000101
*dodecahedral gnomic: A093485 a(n) = n(3n - 1)(3n -2)/2 - (n - 1)(3(n -1) -1)(3(n - 1) - 2)/2
double-header: integer with first two digits identical, a(n) = 11a(g(2, [l0(b - 2)], 10) + b, a < 10 -- 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 112, 113, 114, 115, 116, 117, 118, 119, 220, 221, 223, 224, 225, 226, 227, 228, 229, 330, 331, 332, 334, 335, 336,337, 338, 339, 440
*double primorial: [factorial:primorial::double factorial:?] A079078 n## = p(i)p(i - 2)##; ((2n)## = Π(p(2i)) and (2n + 1)## = Π(p(2i + 1)), where p(n) = nth prime
dufactorial: a(n) = (n!)! A205022-- 1, 2, 720, 620448401733239439360000, 6689502913449127057588118054090372586752746333138029810295671352301633557244962989366874165271984981308157637893214090552534408589408121859898481114389650005964960521256960000000000000000000000000000
*Eckover: [pi:e::Pickover:?] A093648 decimal place of first n digits of pi in e -- 38, 1862, 3918
Eelru: [alphadigital Euler] 1, 1, 1, 2, 5, 16, 722, 8513, 9763, 55120, 597332, 5776220, 85663222, 899911630, 5911773320, 55499111132, 854997663220, 88444499117733320, 88888591132220, 885511777333220, 8554449991163200, 88449991177633330
emdost: [alphadigital modest] 13, 91, 32, 62, 92, 93, 46, 49, 59, 96, 97, 89, 130, 910, 111, 133, 991, 320, 620,
empowered [Reinhard Zumkelle] n = abcdef..., a(n) = (...(((((a^b)^c)^d)^e)^f)...
evil: A001969 with even number of ones in binary
exponential primorial: A140319 a(n) = g(p(n - 1), (2, 0), -1, p(n)) -- 1, 2, 9, 1953125, 1.286479g(2, 1.650582g(2, 6, 10)
faketorial: a(a(n)) = (n!)! -- 1, 1, 2, 6, 7, 8, 720, 721, 722, 723, 724, 726, 727, 728,
9006084097
flawed: NA73417 integer with a, f, l or w -- 2, 4, 5, 11, 12, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 72, 74, 75, 82, 84, 85, 92, 94, 95, 102, 104, 105, 111, 112, 120, 121, 122
*flawless: A073417 referring to integer without a, f, l or w
*four-is: A072425 referring to the sequence counting the number of letters in the words of the generating sentence, "Four is the number of letters in the first word of this sentence, two in the second, three in the third, six in the fourth, two in the fifth ..."
godless: without d, g or o -- 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 23, 25, 26, 27, 29, 30, 33, 35, 36, 37, 39, 50, 53, 55, 56, 57, 59, 60, 63, 65, 66, 67, 69, 70, 73, 75, 76, 77, 79, 90, 93, 95, 96, 97, 99
godly: with d, g or o -- 0, 1, 2, 4, 8, 14, 18, 21, 22, 24, 28, 31, 32, 34, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 58, 61, 62, 64, 68, 71, 72, 74, 78, 91, 92, 94, 98, 100, 101, 102, 103
gogo: a(n) = g(3, 2, n) -- 1, 4, 27, 256, 46656, 16777216, 8916100448256, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979, 104857600000000000000000000, 5842587018385982521381124421
gogoo: a(n) = g(2, 2n, n) -- 1, 16, 729, 65536, 9765625, 2176782336, 678223072849, 281474976710656, 150094635296999121, 100000000000000000000, 81402749386839761113321, 79496847203390844133441536, 91733330193268616658399616009
googo: a(n) = g(2, n, 2n) -- 2, 16, 216, 4096, 100000, 2985984, 105413504, 4294967296, 198359290368, 10240000000000, 584318301411328, 36520347436056576, 2481152873203736576, 182059119829942534144, 14348907000000000000000
googoo: a(n) = g(3, 2, 2n) -- 1, 256, 16777216, 11112006825558016, 18446744073709551616, 39346408075296537575424,
104857600000000000000000000, 341427877364219557396646723584,
1333735776850284124449081472843776, 6156119580207157310796674288400203776,
33145523113253374862572728253364605812736, 205891132094649000000000000000000000000000000
happy couple: referring to integers, f(2n - 1) = Sg(2, 2, d(2n - 1)) and f(2n) = Sg(2, 2, d(2n)) -- 31, 32, 129, 130, 192, 193, 262, 263, 301, 302, 319, 320, 367, 368, 391, 392, 565, 566, 622, 623, 637, 638.655, 656, 912, 913, 931, 932, 1029, 1030, 1092, 1093, 1114, 1115, 1121, 1122, 1151, 1152, 1184, 1185, 1211, 1212, 1221, 1222, 1257, 1258, 1274, 1275, 1299, 1300, 1332, 1335, 1447, 1448, 1474, 1475, 1511, 1512, 1527, 1528, 1574, 1575, 1581, 1582, 1724, 1725, 1744, 1745, 1754, 1755, 1771, 1772, 1784, 1785, 1814, 1815, 1851, 1874, 1875, 1880, 1881, 1882, 1902, 1903, 1929, 1930, 2062, 2063
*harmless: A073416 referring to integer without a, h, m or r. -- 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 29, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 1000000000, 1000000001, 1000000002
h-ban:not containing an "h" -- 0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 25, 26, 27, 29, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 90, 91, 92, 94, 95, 96, 97, 99, 101, 102, 104,
heptagonal gnomic: A016861 ending in one or six, a(n) = n(5n - 3)/2 - (n - 1)(5(n - 1) - 3)/2 = 5n + 1 -- 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231
hex: A003215 a(n) = 3n(n + 1) + 1
h-ish: containing an "h" -- 3, 8, 13, 18, 23, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 48, 53, 58, 63, 68, 73, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130
Horner: [Jack Horner's pulling out of pi] A032445 number of digits to reach n in decimal expansion of p -- 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, 95, 149, 111, 3, 5, 40, 96, 426, 37, 54, 94, 137, 18, 293, 91, 8, 30, 26, 199, 67, 140
i-ban: not containing an "i" -- 0, 1, 2, 3, 4, 7, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 27, 40, 41, 42, 43, 44, 47, 70, 71, 72, 73, 74, 77, 79, 100, 101, 102, 103, 104, 107, 110, 11, 112, 114, 117, 120, 122, 123, 124, 127, 140, 141, 142, 143, 144, 147, 170, 171, 172, 173, 174, 177, 200, 201, 202, 203, 204, 207, 210, 211, 212, 213, 214, 217,
*icosahedral gnomic: A093500 a(n) = n(5g(2, 2, n) - 5n + 2)/2 - (n - 1)(5g(2, 2, n - 1) - 5(n - 1) + 2)
i-ish: containing an "i" -- 5, 6, 8, 9, 13, 16, 18, 19, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 105, 106, 108, 109, 113, 1176, 118, 119, 125, 126, 128,
immodest: referring to integers not modest, n = N[n/g(2, a, 10)] (mod (n - [n/g(2, a, 10])-- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90
imperfect: referring to integers not perfect, n = NS(div(n)) -- 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
interddo: [prime:interemirp::odd:?] referring to average of two consecutive odd numbers which when reversed are still odd -- 2, 4, 6, 8, 10, 12, 14, 16, 18, 25, 32, 34, 36, 38, 45, 52, 54, 56, 58, 65, 72, 74, 76, 78, 85, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146
*interemirp: [prime:interprime::emirp:?] A079721 referring to average of two consecutive emirps
interfortunate: [prime:interprime::fortunate:?] 4, 6, 10, 18, 20, 18, 21, 30, 49, 64, 64, 66, 59, 77, 83, 60, 85, 99, 96, 91, 115, 174, 149, 102, 163, 223, 175, 175, 207, 177, 196, 436, 441, 198, 162, 303, 339, 219, 195, 195, 291, 308, 492, 532, 543, 690, 460, 348, 338, 368, 387, 307, 280, 274, 336, 354, 319
interJacobsthal-Lucas: [prime:interprime::Jacobsthal-Lucas:?] 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 27, 36, 38, 45, 52, 55, 58, 65, 72, 74, 77, 85, 92, 94, 96, 100, 104, 106, 108, 111, 114, 116, 118, 121, 124, 126, 128, 131, 134, 136, 138, 141, 144, 146, 148, 151, 154, 156, 158, 161, 164, 166, 168, 171, 174, 176, 178, 181
interpodd: [prime:interprime::podd:?] referring to average of consecutive palindromic odd integers -- 2, 4, 6, 8, 10, 22, 44, 66, 88, 100, 106, 112, 117, 136, 146, 156, 166, 176, 186, 247, 308, 318, 328, 338, 348, 358, 368, 378, 388, 449, 510, 520, 530, 540, 550, 560, 570, 580, 656, 712, 722, 732, 742, 752, 762, 772, 782, 853
intwo: number with 2 interiorly, a(n) = a[g(2, [log(b + 2), 10] + b[log(c + 1)] + c -- 120, 121, 123, 124, 125, 126, 127, 128, 129, 320, 321, 323, 324, 325, 326, 327, 328, 329, 420, 421, 423, 424, 425, 426, 427, 428, 429, 520, 521, 523
Ir-ish: containing "ir" -- 13, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
Langford, modified: referring to integers with n digits between digits n including 0 and other single digits -- 0, 101, 2002, 31013, 20121, 12102, 23123, 312132, 23421314, 41312432, 2302131, 1312032
*left primorial: A079096 sum of factorials of all prime less than n, #n = (n - 1)# + #(n - 2)
lil: [lucky-indexed-lucky] 1, 7, 11, 29, 199, 5778, 1149851
lime: [sublime backformation] number n such that (n - 1)! < e(A81357 - ½) < n! where A81357 = sublime -- 4, 58, ?
L-ish: containing an "l" -- 11, 12, 111, 112, 211, 212, 311, 312, 411, 412, 511, 512, 611, 612, 711, 712, 811, 812, 911, 912, 1011, 1012, 1111, 1112, 1211, 1212, 1311, 1312, 1411, 1412, 1511, 1512, 1611, 1612, 1711, 1712, 1811, 1812, 1911, 1912, 2011, 2012, 2111, 2112, 2211, 2212, 2211, 2212, 2311, 2312, 2411, 2412, 2511, 2512,
*live: [prime:emirp::evil:?] A091017 non-palindromic integer which has an even number of ones in binary and whose reverse does too
magic: a(n) = g(99, n, n, n, n - 1, n, n) -- 1, 4, g(99, 3, 3, 3, 2, 3, 3), g(99, 4, 4, 4, 3, 4, 4)
Malu: [prime:emirp:Ulam:?] 1, 2, 3, 4, 6, 8, 11, 26, 28, 62, 77, 82, 99,
middling: referring to integer with only 4, 5 or 6 -- 4, 5, 6, 44, 55, 66, 444, 555, 666, 4444, 5555, 6666, 44444, 55555, 66666, 444444, 5555555, 6666666, 4444444, 5555555, 6666666
middlinger: referring to integer with two of 4, 5 or 6 -- 45, 46, 54, 56, 64, 65, 445, 446, 454, 455, 464, 466, 544, 545, 554, 556, 565, 566, 644, 646, 655, 656, 664, 665, 4445, 4446, 4454, 4456, 4464, 4465
middlingest: referring to integer with all three of 4, 5 or 6 -- 456, 465, 546, 564, 645, 4654, 4456, 4465, 4546, 4564, 4645, 4654, 5456, 5465, 5546, 5564, 5645, 5654, 6456, 6465, 6546, 6564, 6645, 6654
m-ish: containing an "m" -- 1000000, 1000001, 1000003, 1000004, 1000005, 1000006, 1000007, 1000008, 1000009, 1000010, 1000011, ...
*more-or-less prime: A045718 f(2n) = p(n) - 1, f(2n - 1) = p(n) + 1
*mostly evil: [prime:mostly prime::evil:?] A093505 a(n) = [A1969/2 + ½]
mostly-harmless: without three-fourths of a, h, m or r -- 0, 4, 8, 14, 18, 24, 28, 40, 41, 42, 45, 46, 47, 49, 54, 58, 64,68, 74, 78, 80, 81,82, 85, 86, 87, 89, 94, 98, 1000000, 1000001, 1000005, 1000006, 1000007,1000009, 1000010, 1000011, 1000012, 1000015, 1000016, 1000017, 1000019, 1000020, 1000021, 1000022, 1000025, 1000026, 1000027, 1000029, 1000050, 1000051, 1000052, 1000055, 1000056, 1000057, 1000059, 1000060
*mostly-ugly:
mostly-useless: without two-thirds of e, s or u -- 0, 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 18, 19
multiplicadditive: alternately multiplying by and then adding, a(n) = ((n - 3) + (n - 2))*(n - 1), if n = 0 (mod 2), a(n) = (n - 3)*(n - 2) + (n - 1), if n = 1 (mod 2) -- 1, 1, 2, 4, 6, 18, 21, 84, 88, 440, 445, 2670, 2676, 18732, 18739, 149912, 149920, 1349280, 1349289, 13492890, 13492900, 148421900, 148421911, 1781062932, 1781062944, 2315381272, 23153818285, 324153455990, 324153456004, 4862301840060, 4862301840075, 77796829441200, 77796829441216, 1322546100500670, 1322546100500690
*n-est: A072422 -- referring to Aronson-like sequence generated by the sentence, "N est prima littera in hic sententiam, doudevicesima littera in hic sententiam, quarta vicesima littera in hic sententiam, septima vicesima littera in hic sententiam, tertia quinquagentesima littera in hic sententiam ...."
neve: [prime:emirp::even:?] A79720 a(n) = 2a, R(a(n)) = 2b, nonpalindromic even integer which is still even when reversed -- 24, 26, 28, 42, 46, 48, 62, 64, 68, 82, 84, 86, 204, 206, 208, 214, 216, 218, 224, 226, 228, 402, 404, 406, 408, 412, 416, 418, 422, 426, 428, 432, 436, 438, 442, 446, 448, 452, 456, 458, 462, 466, 468, 472, 476, 478, 482, 486, 488, 492, 496, 498, 602
nonacci: A104144 Fibonacci-like sequence but adding previous 9 numbers, a(n) = a(n - 1) + a(n - 2) + a(n - 3) + a(n - 4) + a(n - 5) + a(n - 6) + a(n - 7) + a(n - 8) + a(n - 9)
Nosnora: [Aronson ananym] Aronson number whose reverse is also -- 1, 4, 11, 61, 42, 92, 33, 53, 93, 54, 74, 15, 65, 85, 26, 46, 96, 37, 87, 8, 48, 98, 49, 99, 401, 111, 611, 221, 621, 131, 631, 241, 741, 851, 461, 961, 471, 181, 381, 391, 991, 502, 802, 412, 22, 622, 132, 732, 342, 942, 452, 72, 882, 303, 703, 913, 323
*nth n in pi: A101196
*number name as if base 36: A072922 referring to integer resulting from interpreting English name as if in base 36
*number name as if base 27: A072959 referring to integer resulting from interpreting English name as if in Sallows' base 27
*oban:, A008521 not containing an "o"
*octonacci: A079262 referring to integers formed like Fibonacci numbers, but by adding previous 8, a(n) = a(n - 1) + a(n - 2) + a(n - 3) + a(n - 4) + a(n - 5) + a(n - 6) + a(n - 7) + a(n - 8)
odious: A000069 with odd number of ones in binary
OEIS: [on-line encyclopedia of integer sequences] A91967, a(n) = An(n), nth term in nth sequence -- 1, 2, 1, 0, 2, 3, 0, 6, 6, 4, 44, 1, 180, 42, 16, 1096, 7652, 13781, 8, 24000, 119779, 458561, 152116956851941670912
pabelian: [palindromic abelian] 1, 2, 3, 4, 5, 7, 9, 11, 33, 77, 99, 101
pansquare: [g(2, 2, pancake - cake)] a(n) =g(2, 2, (1 + n(n + 1)/2 - (g(2, 3, n) + 5n + 6)/6) -- 0, 1, 16, 400, 3136, 48400, 132496, 665856, 1299600, 4096576, 16483600, 24601600, 71166096, 131790400, 175403536, 615238416, 1171008400, 1430352400, 2511613456, 4202150976, 6750265600, 9079040656, 13801550400, 23133193216, 29480890000, 33161866816, 41679672336, 46578272400, 57822935296, 116537573376
peban: [palindromic eban] 2, 4, 6, 44, 66, 2002, 4004, 6006, 40004, 44044, 60006, 64064, 66066, 2000002, 2002002, 2004002, 2006002, 4000004
peven: [palindromic even] 2, 4, 6, 8, 22, 44, 66, 88, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 606, 616, 526, 636, 646, 656, 666, 676, 686, 696, 808, 818, 828, 838, 848, 858, 868, 878, 888, 898, 2002
pfibonacci: [palindromic Fibonacci] a(n) = R(n) -- 1, 2, 3, 5, 8, 55,
pflimsy: [palindromic flimsy] 11, 22, 44, 55, 77, 88, 99
phappy: [palindromic happy portmanteau] 1, 7, 44, 262, 313
pheptal: [palindromic heptal] 0, 1, 2, 3, 4, 5, 6, 11, 22, 33, 44, 55, 66, 101, 111, 121, 131, 141, 151, 161, 202, 212, 222, 232, 242, 252, 262, 303, 313, 323, 333, 343, 353, 363, 404, 414, 424, 434, 444, 454, 464, 505, 515, 525, 535, 545, 555, 606, 616, 626, 636, 646, 656, 666,
phex: [palindromic hex] 1, 7, 919, 1081801, 1188811, 1946491
phexal: [palindromic hexal] 0, 1, 2, 3, 4, 5, 11, 22, 33, 44, 55, 101, 111, 121, 131, 141, 151, 202, 212, 222, 232, 242, 252, 303, 313, 323, 333, 343, 353, 404, 414, 424, 434, 444, 454, 505, 515, 525, 535, 545, 555, 1001, 1111, 1221, 1331, 1441, 1551, 2002
Phickover: [pi:phi:Pickover:?] decimal place of first n digits of e in phi -- 20, 65, 1463, 17125
plucky: [palindromic lucky] 1, 3, 7, 9, 33, 99, 111, 141, 151, 171, 303
poctal: [palindromic octal] referring to integer without 8 or 9, such that x = n (base 8), such that n = R(n) -- 0, 1, 2, 3, 4, 5, 6, 7, 11, 22, 33, 44, 55, 66, 77, 101, 111, 121, 131, 141, 151, 161, 171, 303, 313, 323, 333, 343, 353, 363, 373, 404, 414, 424, 434, 444, 454, 464, 474, 505, 515, 525, 535, 545, 555, 565, 575, 606, 616, 626, 636, 646, 656, 666
*poddish: [palindromic oddish] A092361 a(n) = ag(2, [g(2, [log(c)] + 1, 10)(2b - 1) + c, 10], 10) + g(2, [log(c)] + 1, 10)(2b - 1) + c = R(a(n))
podious: [palindromic odioius] n = R(A69) -- 1, 2, 4, 7, 8, 11, 22, 44, 55, 88
powertrain [Conway] n = abcdef..., a(n) = a^b*c^d...
pring: [palindromic ring] a(n) = (n - 1)(2a(n - 1) + 3a(n - 2))/(n + 1) = R(n) -- 0, 1, 3, 6, 232
Proman: [palindromic Roman] 1, 2, 3, 5, 10, 19, 20, 30, 50, 100, 190, 200, 300, 500, 1000, 1900, 2000, 3000, 5000, 10000, 19000, 20000, 30000, 50000, 100000, 190000, 200000, 300000, 500000, 1000000, 2000000, 3000000, 5000000, 10000000, 19000000, 20000000, 30000000, 50000000, 100000000
psubemirp: [palindromic subemirp] 5, 6, 11, 55, 66, 272, 393, 404, 424, 434
psubminimal:[palindromic subminimal] 0, 1, 2,4, 6, 9, 22, 44, 66, 88, 212, 353, 464
ptriangular: [palindromic triangular] 1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995
quadraprime: [prime:biprime::composite:?] referring to composite with at least four prime factors which may or may not be different, a(n) = p(n')*p(n")*p(n"')*p(n"") -- 16, 18, 20, 24, 28, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 225, 228, 232, 234, 240, 243, 248, 250, 252, 256, 260, 264, 268, 270, 272, 276, 280, 282, 286, 288, 290, 294, 297, 298, 300
quarter-cube: [square:quarter-square::cube:?] a(n) = [g(2, 3, n)/4] -- 0, 2, 6, 16, 31, 54, 85, 128, 182, 250, 332, 432,549, 686, 843,1024, 1228, 1458, 1714, 2000, 2315, 2662, 3041, 3456,3906, 4394, 4920, 5488, 6097, 6750, 7447, 8192, 8984, 9826, 10718, 11664, 12663, 13718, 14829, 16000
Rakerpak: [Kaprekar ananym] referring to integer n such that n = a + b = R(n) and g(2, 2, n) = a10c + b, for some c = 1, a = 0 and 0 = b < g(2, n, 10) , with n! = g(2, a, 10), f(1) = 1 -- 1, 9, 55, 99, 999, 7777, 9999, 22222, 99999,
r-ish: containing an "r" -- 3, 4, 13, 14, 23, 24, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 63, 64, 73, 74, 83, 84, 93, 94, 103, 104, 113, 114, 123, 124, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 153, 154, 163, 164, 173, 174, 183, 184, 193, 194, 203
Rollman: referring to integer not non-Rollman -- 12, 23, 31, 34, 41, 42, 45, 51, 52, 53, 54, 56, 61, 62, 63, 64, 65, 67, 71, 72, 73, 74, 75, 78, 81, 82, 83, 84, 85, 86, 89, 91, 92, 93. 94, 95, 96, 97, 98,
*Roman numeral as base-27: A073427 referring to integer transformed to Roman numeral then interpreted as if in Sallows' base 27
*Roman numeral as base-36: A073421 referring to integer transformed to Roman numeral then interpreted as if in base 36
*s-ain't: A072886 referring to integer generated like the Aronson series from a generating sentence, "S ain't the second, third, fourth, fifth . . . letter of this sentence."
satyr: [sort-add-then-you-reverse] a(n) = R(sort(n) + n) -- 2, 4, 6, 8, 1, 21, 41, 61, 81, 11, 22, 42, 62, 82, 3, 23, 43, 63, 83, 4, 42, 44, 46, 48, 5, 66, 77, 88, 99, 11, 112, 114, 116, 118, 66, 77, 88, 99, 11, 112, 123, 1, 134, 136, 138, 77, 88, 99, 11, 112
selfish: [9:9-ish::self:?] contains a self-number string not of the form b + Sd(b)), a(n) = ag(2, [g(2, [log(c)] + 1, 10)N(b + Sd(b)) + c, 10], 10) + g(2, [log(c)] + 1, 10)N(b + Sd(b)) + c -- 1, 3, 5, 7, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110, 111, 112, 113, 115, 117, 119, 121, 123, 125, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 143, 145, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 161, 163, 165,167, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 183, 185, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209
selfless: referring to integers, a(n) = N(x + S(d(i))) -- 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 110, 112, 114, 116, 118, 120
*semi-Tribonacci: [Fibonacci:semi-Fibonacci::Tribonacci:?] A074364 f(0) = 0, f(1) = 1; f(2x) = f(x), f(2x + 1) = f(2x) + f(2x - 1) + f(2n - 2)
*s-inner: A072887 referring to integer not s-ain't
*slices of pi: A016062 digital expansion of pi such that a(n) > a(n -1)
sodd: [sort-odd] 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 12, 23, 25, 27, 29, 13, 33, 35, 37, 39, 14, 34, 45, 47, 49, 15, 35, 55, 57, 59, 16, 36, 56, 67, 69, 17, 37, 57, 77, 79, 18, 38, 58, 78, 89, 19, 39, 59, 79, 99, 11, 13, 15, 17, 19, 112, 123, 125, 127, 129, 113
*spiro-Tribonacci: A092360 a(n) = a(n - 1) + f(a) + f(b), such that f(a) and f(b) are nearest when terms are arranged in a spiral. In the case of a tie in nearness, the chronologically nearer value is used.
*spiro-Tetronacci: A092369 a(n) = a(n - 1) + f(a) + f(b) + f(c), such that f(a), f(b) and f(c) are nearest when terms arranged in a spiral. In the case of a tie in nearness, the chronologically nearer value is used.
Squaran: [cube:Cuban::square:?] a(n) = (p - 1)/2 -- 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 26, 29, 30, 33, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135
subcarmichael: [factorial:subfactorial::Carmichael:?] 206, 407, 636, 907, 1038, 2428, 3278, 3894, 5828, 10794, 15098, 17164, 19363, 23083, 23534, 27724, 37193, 42645, 46433, 59744, 63305, 69331, 92927
subcube: [factorial:subfactorial::cube:?] [g(2, 3, n)/e + 1] -- 0, 3, 10, 24, 46, 79, 126, 188, 268, 368, 490, 636, 808, 1009, 1242, 1507, 1807, 2145, 2523, 2943, 3407, 3917, 5086, 5748, 6466, 7241, 8076, 8972, 9933, 10959, 12055, 13220, 14459, 15773, 171164, 18634
subdecacci: [factorial:subfactorial::decacci:?] 0, 1, 1, 3, 6, 12, 24, 47, 94, 188, 376, 752, 1504, 3006, 6010, 12013, 24015, 48007, 95967, 191839, 383489, 766602, 1532452, 3063401, 6123795, 12241580, 24471146, 48918277
subdemlo: [factorial:subfactorial::Demlo:?] 0, 45, 4533, 454081, 45416307, 4541712413, 454172058760, 45417214051093, 4541721486860290
subdodecahedral: [factorial:subfactorial::dodecahedral:?] 0, 7, 31, 81, 167, 300, 489, 745, 1076, 1494, 2007, 2627, 3362, 4223, 5220, 6363, 7661, 9125, 10764, 12589, 14609, 16834, 19275, 21940, 24841, 27987
subdowling:[factorial:subfactorial::Dowling:?] 0, 1, 5, 53, 681, 10140, 174274, 3417746, 74953683, 1807204214, 47374658135, 1340216472714
subemirp: [factorial:subfactorial::emirp:?] 5, 6, 11, 14, 26, 27, 29, 36, 39, 55, 58, 61, 66, 73, 114, 124, 128, 132, 143, 258, 261, 270, 272, 273, 276, 280, 283, 334, 345, 346, 351, 356, 357, 362, 365, 371, 376, 379, 390, 393, 401, 404, 406, 408, 423, 424, 434, 439
subeuler: [factorial:subfactorial::Euler:?] 0, 1, 2, 6, 22, 100, 510, 2929, 18586, 130153, 994292,
subfortunate: [factorial:subfactorial::fortunate:?] 1, 2, 3, 5, 8, 6, 7, 8, 14, 22, 25, 22, 26, 17, 39, 22, 22, 40, 33, 38, 29, 56, 72, 37, 38, 82, 82, 47, 82, 70, 60, 84, 237, 88, 58, 61, 161, 88, 73, 70, 73, 141, 86, 276, 115, 284, 223, 115, 141, 108, 163, 122, 104, 102, 100, 148, 113, 122
subfranel: {factorial:subfactorial::Franel:?] 0, 1, 4, 20, 127, 828, 5586, 38613, 271923, 1942746, 14040215, 102423489, 753021404, 5572764973, 41474148184, 310169073798, 2329522847111, 17561580656514
subharmonic: [factorial:subfactorial::harmonic:?] 0, 2, 10, 52, 99, 182, 247, 603, 1093, 2281, 2990, 3013, 6843, 6850, 10244, 11125, 12052, 20550, 38872, 43336, 61583, 63864, 87375, 89049, 122371, 132569, 198434, 255868, 267147, 277190, 349845, 400720, 522860, 566431
subJacobsthal-Lucas: [factorial:subfactorial:: subJacobsthal-Lucas:?] 0, 2, 3, 6, 11, 24, 47, 95, 188, 377, 753, 1507, 3013, 6028, 12054, 24110, 48218, 96438, 192874, 385750, 771499, 1542999, 3085996, 6171993, 12343985, 24687972, 49375942, 98751886, 197503771, 395007543, 790015084, 1580030169, 3160060337, 6320120675, 12640241349, 25280482700, 50560965398, 101121930797, 202243861594, 404487723188, 808975446375,
sublah: [factorial:subfactorial::Lah:?] [(n - 1)n!/2e + ½] -- 0, 2, 13, 88, 662, 5562, 51915, 533984, 6007324, 73422850, 969181625, 13744757592, 208462156818, 3367465610138, 57727981888087, 1046800738237310
submarkoff: [factorial:subfactorial::Markoff:?] 0, 1, 2, 5, 11, 13, 33, 62, 71, 86, 159, 224, 362, 487, 588, 1066, 1538, 2112, 2379, 2782, 3339, 4027, 5408, 10542, 12310, 13857, 15915, 18998, 22886, 27600, 35521, 49714, 71746, 72258, 108409, 156860, 183716, 189174, 237657
subminimal: [factorial:subfactorial::minimal:?] A79717 -- 0, 1, 1, 2, 4, 6, 9, 13, 18, 22, 24, 44, 53, 66, 71, 88, 132, 212, 265, 309, 331, 353, 377, 464, 477, 618, 927, 1059, 1130, 1324, 1507, 1854, 1907, 2318, 2384, 2472, 2781, 3390, 3708
submodest: [factorial:subfactorial::modest:?] 5, 7, 8, 10, 11, 14, 17, 18, 22, 18, 22, 25, 29, 33, 38, 40, 41, 49, 76, 77, 78, 80, 82, 86, 98, 110, 114, 120, 123, 147, 149, 151, 152, 154, 155, 159, 160, 163, 171, 184, 187, 188, 189, 196, 200, 204, 220, 224, 225, 227, 229, 231
subpeban: [factorial:subfactorial::peban:?] 1, 2, 16, 24, 736, 1473, 2209, 16203, 24304, 735760, 736495, 1471519, 1472991, 2207279, 2209486, 16186712, 24280067, 735758883, 1471517766, 2207276649
subperfect: [factorial:subfactorial::perfect:?] 2, 10, 182, 2990, 12342479, 3160036228, 50560868961, 848272237263603328
subphexagonal: [factorial:subfactorial:phexagonal:?] 0, 2, 24, 1105, 2205, 5537, 24304, 227245, 304909, 467067, 618354
subpodd: [factorial:subfactorial::podd:?] 0, 1, 2, 3, 3, 4, 12, 20, 28, 36, 37, 41, 45, 48, 52, 56, 59, 63, 67, 70, 111, 115, 119, 123, 126, 130, 134, 137, 141, 145, 186, 189, 193, 197, 200, 204, 208, 212, 215, 219
*subprimorial: [factorial:subfactorial::primorial:?] A079266 [n#/e + ½]
subsquare: a(n) = [g(2, 2/e, n) + ½] -- 0, 1, 3, 6, 9, 13, 18, 24, 30,37, 45, 53, 62, 72, 83, 94, 106, 119, 133, 147, 162, 178, 195, 212, 230, 249, 268, 288, 309, 331, 354, 377, 401, 425, 451, 477, 504, 531, 560, 589, 618, 649, 680, 712, 745, 778, 813, 848, 883, 920, 957
subulysses: [factorial:subfactorial::Ulysses:?] 0, 6, 2.805300541375g(2, 12, 10), > 4.932456888g(2, 153, 10)
*suburban: A072955 referring to integer without b, r, s or u
supercake: [factorial:superfactorial::cake:?] referring to the product of previous cake integers, a(n) = P((g(2, 3, n) + 5n + 6)/6) -- 1, 2, 8, 64, 960, 24960, 1048320, 67092480, 6239600640, 811148083200, 142762062643200, 3140765378150400, 939088848066969600
supercats: [factorial:superfactorial:CATS:?] 2, 6, 408, 5304, 1177488, 41212080, 1030302000, 389454156000, 4283995716000, 5286450713544000
supercomposite: [factorial:superfactorial::composite:?] referring to integers which are the product of first n composite integers -- 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
supercube: [factorial:superfactorial::cube:?] referring to product of previous cubes, a(n) = Pg(2, 3, n) -- 1, 8, 216, 13824, 1728000, 373248000, 128024064000, 65548320768000, 47784725839872000, 47784725839872000000, 63601470092869624000000
supercurious: [factorial:superfactorial::curious:?] 1, 5, 30, 750, 57000, 21432000, 13395000000, 125591520000000, 11381731500000000000
supereuler: [factorial:superfactorial::Euler:?] 1, 2, 10, 160, 9760, 2654720, 3676787200, 29178983219200
supereven: [factorial:superfactorial::even:?] a(n) = P(2n) -- 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 142832913020800
superfortunate: {factorial:superfactorial::fortunate:?] referring to product of previous fortunate integers -- 3, 15, 105, 1365, 31395, 533715, 10140585, 233233455, 8629637835, 526407907935, 35269329831645, 2151429119730350, 152751467500854496, 7179318972540161024, 768187130061797179392, 45323040673646030716928
superjacobsthal-Lucas: [factorial:superfactorial::Jacobsthal-Lucas:?] 1, 5, 35, 595, 18445, 1198925, 152263475, 39131713075, 19996305381325
superkolakoski: [a(n) = A2a(n - 1) -- 1, 2, 4, 4, 4, 8, 8, 16, 32, 32, 64, 128, 128, 128, 256, 256, 256, 512, 1024, 1024, 2048, 2048, 2048, 4096, 4096, 8192, 16384, 16384, 16384, 32768, 32768, 32768, 65536, 65536,
superménage: [factorial:superfactorial:: ménage:?] referring to product of previous non-nero menage integers -- 3, 39, 3237, 1916304, 9238501584, 406300061162736, 180646289093747539968
supermersenne: [factorial:superfactorial::Mersenne:?] referring to product of previous Mersenne integers, a(n) = PM(i) = Pg(2, p(i), 2) - 1) -- 3, 21, 651, 82677, 169239819, 1386243357429, 181696303101576448
super-1: [3:1::super-3:?] n such that 2n contains "1" -- 5, 6, 7, 8, 9, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 105, 106, 107, 108, 109, 500, 501, 502, 503, 504, 505, 506, 507, 508
super-2: [3:2::super-3:?] n such that 2g(2, 2, n) contains "22" -- 19, 31, 69, 81, 105, 106, 107, 119, 127, 131, 169, 181, 190, 231, 247, 269, 281,
superpancake: [factorial:superfactorial::pancake:?] referring to product of previous pancake integers, a(n) = (n(n + 1)/2 + 1)a(n - 1) -- 2, 8, 56, 616, 9856, 216832, 6288128, 232660736, 10702393856, 599334055936, 40155381747712, 3172275158069250, 291849314542370816
superpodd: [factorial:superfactorial::podd:?] a(n) = P(2n + 1) = P(R(2n + 1)) -- 1, 3, 15, 105, 945, 10395, 343035, 18866925, 1452753225, 143822569275, 14526079496775, 1612394824142020
superprimorial: A006939 aka Chernoff referring to product of first n primorials, a(n) = ns# = n#(n - 1)s# -- 1, 2, 12, 360, 75600, 174636000, 5244319080000, 2677277333530800000
supersmarandache: [factorial:superfactorial::Smarandache:?] referring to product of Smarandache sequence integers -- 2, 8, 32, 160, 480, 3360, 13440, 80640, 403200, 4435200, 17740800, 230630400, 1614412800, 8072064000, 137225088000, 823350528000, 15643660032000, 7821830016000, 547528101120000, 6022809112320000, 138524609583360000
supersquare: [factorial:superfactorial::square:?] referring to product of previous squares, a(n) = g(2, 2, n)a(n - 1) = g(2, 2, n!) -- 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 220442532802560000, 38775788043632640000, 7600054456551997440000
superstar: a(n) = Pi(3i - 2) -- 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000
supervampire: [factorial:superfactorial::vampire:?] referring to product of previous vampire integers -- 126, 19278, 13263264, 15995496384, 20074347961920, 25293678432019200, 35284681412666785792
*taliban: [a:tali::aban:?] A072954 referring to integer without a, i, l or t
*t-est: A072423 referring to integer generated by generating sentence, "T est prima et quarta et undecima et sexima decima et nona decima et nona vicesima ... littera in hic sententiam."
tetrational factorial: a(n) = g(3, a(n - 1), n) -- 1, 2, 9, g(3, 9, 4) > g(2, 153, g(3, 5, 10))
toscodicity: A072420 minimum number of steps needed to transform the integer into 153 by the triple-or-sum-of-cube-of-digits (TOSCOD) operator, a(n) -- 4, 4, 3, 5, 4, 3, 5, 4, 3, 4, 5, 4, 4, 4, 3, 7, 2, 2, 4, 4, 4, 6, 4, 3, 6, 5, 2, 7, 5, 3, 4, 4, 5, 5, 3, 3, 5, 5, 3, 5, 4, 3, 5, 5, 2, 6, 5, 6, 6, 4, 1, 6, 3, 2, 6, 5, 3, 6, 3, 3, 7, 5, 3, 6, 5, 5, 4, 4, 3, 5, 2, 2, 5, 5, 3, 4, 5, 4, 5, 4, 2, 7, 7, 6, 6, 4, 4, 5, 4, 3, 4, 5, 3, 6, 3, 3, 5, 4, 4, 4
*triple-digit inflation: digital expansion in which f(d(n)) = 3d(n) -- 1, 3, 9, 27, 621, 1863, 324189, 961232427, 2718369612621, 6213249182718361863, 1863961227324621324918324189, 3241862718366219612186361227324961232427, 9612324186213249181863271836324189183662196122718369612621
*turban: A072956 without letters r, t, or u
uban: [e:u:eban:?] 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45. 46. 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70
uglier: number divisible only by 6, 10, or 15 a(n) = 0 (mod 6, mod 10 or mod 15) -- 6, 10, 12, 15, 18, 20, 24, 30. 36, 40, 45, 48, 50, 54, 60, 70,72, 75, 80, 90, 96, 100, 108, 120, 135, 144, 150, 160, 174, 180, 186
ugliest: a(n) = 60n -- 30, 60, 90, 120, 180, 240, 270, 300, 360, 420, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1260, 1350
ugly: A0512037 aka Hamming, with prime divisors > 5
uple: [nonuple backformation] a(n) N= 0 (mod 9) -- 0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 70, 71, 73, 74, 75, 76
*urban: A072957 referring to integer without r or u
*useless: A073418 referring to integer without e, s or u
vampirish: numbers with a vampire string -- 126, 153, 688, 1126, 1153, 1206, 1255, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1395, 1435, 1503, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1688, 1827, 2126, 2153, 2187, 2688, 3126, 3153, 3159, 3688, 3784, 4126, 4153, 4688, 5126, 5153, 5688, 6126, 6153, 6688, 6880, 6881, 6882, 6883, 6884, 6885, 6886, 6887, 6888, 6889, 7126, 7153, 7688
v-ish: containing a "v" -- 5, 7, 11, 12, 25, 27, 35, 37, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 87, 95, 97, 105, 107, 111, 112, 125, 127, 135, 137, 145, 147, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 165, 167, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 185, 187, 195, 197, 205
*worthless: A073419 referring to integer without h, o, r, t, or w -- 5, 6, 7, 9, 11, 55555 (read as five fives)
ylgu: [prime:emirp::ugly:?] number divisible by only by 2, 3 or 5, whose reverse is also a(n) = 0 (mod 2, mod 3, or mod 5) and R(a(n) = 0 (mod 2, mod 3, or mod 5) -- 1, 2, 3, 4, 5, 6, 8, 9, 10, 20, 27, 30,40, 45, 50, 54, 60, 72, 80, 81, 90,100, 108,
neckendorp expansion: A93712 [Fibonacci:prime:neckendorf:?] a(n) = n written abbreviatedly as strings of decreasing primes -- 1, 2, 3, 31, 5, 51, 7, 71, 72, 73, 11, 111, 13, 131, 132, 133, 17, 171, 19, 191, 192, 193, 23, 231, 232, 233, 2331, 235, 29, 291, 31, 311, 312, 313, 3131, 315, 37, 371, 372, 373, 41, 411, 43, 431, 432, 433, 47, 471, 472, 473, 4731, 475, 53, 531, 532, 533, 5331, 535, 59, 591, 61, 611, 612, 613, 6131, 615, 6151, 617, 6171, 6172, 71